Quiz $8 \quad$ Calculus $1 \quad$ Due 11/26/2012

Each problem is worth 5 points. Clear and complete justification is required for full credit.

1. If you use a left-hand sum with $n=4$ subdivisions to approximate $\int_{1}^{5} \frac{1}{x} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& \bar{x}_{1}= \\
& \bar{x}_{2}= \\
& \bar{x}_{3}= \\
& \bar{x}_{4}= \\
& f\left(\bar{x}_{1}\right)= \\
& f\left(\bar{x}_{2}\right)= \\
& f\left(\bar{x}_{3}\right)= \\
& f\left(\bar{x}_{4}\right)= \\
& \sum_{k=1}^{4} f\left(\bar{x}_{k}\right) \cdot \Delta x=
\end{aligned}
$$

Quiz $8 \quad$ Calculus $1 \quad$ Due 11/26/2012

2. If you use a right-hand sum with $n=4$ subdivisions to approximate $\int_{1}^{3} x^{2} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& \bar{x}_{1}= \\
& \bar{x}_{2}= \\
& \bar{x}_{3}= \\
& \bar{x}_{4}= \\
& f\left(\bar{x}_{1}\right)= \\
& f\left(\bar{x}_{2}\right)= \\
& f\left(\bar{x}_{3}\right)= \\
& f\left(\bar{x}_{4}\right)= \\
& \sum_{k=1}^{4} f\left(\bar{x}_{k}\right) \cdot \Delta x=
\end{aligned}
$$

Quiz $8 \quad$ Calculus $1 \quad$ Due 11/26/2012

3. If you use a midpoint sum with $n=8$ subdivisions to approximate $\int_{1}^{5} \frac{1}{x} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& \bar{x}_{1}= \\
& \bar{x}_{2}= \\
& \bar{x}_{3}= \\
& \bar{x}_{4}= \\
& f\left(\bar{x}_{1}\right)= \\
& f\left(\bar{x}_{2}\right)= \\
& f\left(\bar{x}_{3}\right)= \\
& f\left(\bar{x}_{4}\right)= \\
& f\left(\bar{x}_{5}\right)= \\
& f\left(\bar{x}_{6}\right)= \\
& f\left(\bar{x}_{7}\right)= \\
& f\left(\bar{x}_{8}\right)= \\
& \sum_{k=1}^{8} f\left(\bar{x}_{k}\right) \cdot \Delta x=
\end{aligned}
$$

Quiz $8 \quad$ Calculus $1 \quad$ Due 11/26/2012

4. If you use a right-hand sum with n subdivisions to approximate $\int_{1}^{3} x^{2} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& \bar{x}_{k}= \\
& f\left(\bar{x}_{k}\right)= \\
& \sum_{k=1}^{n} f\left(\bar{x}_{k}\right) \cdot \Delta x= \\
& \lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(\bar{x}_{k}\right) \cdot \Delta x=
\end{aligned}
$$

