CALCULUS 1 MTWF 2:00-2:50PM FALL 2012 STUART 405

Instructor: Jonathan White

E-Mail: JWhite@Coe.Edu

Web Page: public.coe.edu/~jwhite

Office: Stuart 316

Office Hours: MTWF 9:30-9:50am, MWF 11:00-11:30, and by appointment

Office Phone: 399-8280

Home Phone: 362-3350 (between 7am and 11pm)

Text: Calculus, Early Transcendentals, 1st Edition, by Briggs & Cochran, Addison-Wesley.

Problem Sets Assorted Problem Sets will be given throughout the term to supplement class work.

Many of these will benefit from the use of the software package *Mathematica*, which

is available on the computers in the labs in Stuart and Peterson Halls. Several assignments will be made through the WeBWorK system, and quizzes will be given occasionally. Combined these will be worth 200 points (25% of the final grade).

Exams: There will be four exams during the course of the semester. The dates of these are

indicated in the schedule on the back of this sheet. These exams will be worth 100 points (12.5% of the final grade) each. The final exam will be held at the scheduled time during finals week and will be worth 200 points (25% of the final grade).

Grading: Grading will approximately follow a 90% A, 80% B, 70% C, 60% D scale. Current

grade information will be available online through Moodle at all times.

Makeups: For the sake of fairness to those who follow the schedule, makeups for exams will be

allowed only under extenuating circumstances, with documentation and advance notice when humanly possible. Late problem sets and quizzes will generally not be accepted, and if accepted due to extenuating circumstances will generally be subject

to a penalty of 20% of the possible points for each day past due.

The "Big Idea" of Calculus is using mathematics to deal with change. Calculus 1 deals primarily with rates of change, whether they be of quantities that change as time goes by or quantities that change as some other quantity is adjusted. These ideas cut across all quantitative disciplines – whether it's a falling stone, a falling stock, a declining population, or an endothermic reaction, there are mathematical commonalities, and those are what Calculus deals with.

In addition to regular exams, all students must successfully complete a computer-administered gateway exam over computing derivatives in order to pass this course.

Calculus is a demanding course in many ways. It requires both a level of computational proficiency and also a level of conceptual understanding beyond any prior mathematics course. Yet because of or despite these difficulties, students who have previously found math classes easy because of an aptitude for moving symbols around might find that there is more to this class than they expect, and students who have in the past felt they weren't good at math might find this class more suited to them. In either case, this class might not be quite what you're used to, and it might be unsettling at first. Give it some time, and feel free to take advantage of my office hours to help past the rough spots.

CALCULUS 1 MTWF 2:00-2:50PM FALL 2012 STUART 405

Tentative Schedule

Monday, August 27 th §1.1 Review of Functions	Tuesday, August 28 th §1.2 Representing Functions	Wednesday, August 29 th §1.3 Inverse Functions	Friday, August 31 st §1.3 Inverse Functions
Monday, September 3 rd No Class – Labor Day	Tuesday, September 4 th §1.4 Trig Functions	Wednesday, September 5 th §1.4 Trig Functions	Friday, September 7 th §2.1 Limits Informally
Monday, September 10 th §2.2 Limits Semi-formally	Tuesday, September 11 th §2.3 Computing Limits	Wednesday, September 12 th §2.4 Infinite Limits	Friday, September 14 th §2.5 Limits at Infinity
Monday, September 17 th §2.6 Continuity	Tuesday, September 18 th §2.7 Limits Rigorously	Wednesday, September 19 th Review for Exam	Friday, September 21st Exam 1
Monday, September 24 th §3.1 Derivatives	Tuesday, September 25 th §3.2 Differentiation Rules	Wednesday, September 26 th §3.3 Product & Quotient Rules	Friday, September 28 th §3.4 Trig Derivatives
Monday, October 1st §3.5 Rates of Change	Tuesday, October 2 nd §3.6 Chain Rule	Wednesday, October 3 rd §3.7 Implicit Derivatives	Friday, October 5 th §3.8 Derivatives of Logs
Monday, October 8 th §3.9 Inverse Trig Derivatives	Tuesday, October 9 th Review for Exam	Wednesday, October 10 th Review for Exam	Friday, October 12 th Exam 2
Monday, October 15 th No Class – Fall Break	Tuesday, October 16 th No Class – Fall Break	Wednesday, October 17 th §3.10 Related Rates	Friday, October 19 th §4.1 Maxima and Minima
Monday, October 22 nd §4.2 Derivatives & Graphs	Tuesday, October 23 rd §4.2 Derivatives & Graphs	Wednesday, October 24 th §4.3 Graphing Functions	Friday, October 26 th §4.4 Optimization
Monday, October 29 th §4.4 Optimization	Tuesday, October 30 th §4.5 Linear Approximation	Wednesday, October 31st §4.6 Mean Value Theorem	Friday, November 2 nd §4.7 L'Hôpital's Rule
Monday, November 5 th §4.7 L'Hôpital's Rule	Tuesday, November 6 th §4.8 Antiderivatives	Wednesday, November 7 th Review for Exam	Friday, November 9 th Exam 3
Monday, November 12 th §5.1 Approximating Areas	Tuesday, November 13 th §5.1 Approximating Areas	Wednesday, November 14 th §5.2 Definite Integrals	Friday, November 16 th §5.3 Fun. Theorem of Calc.
Monday, November 19 th §5.3 Fun. Theorem of Calc.	Tuesday, November 20 th §5.4 More on Integrals	Wednesday, November 21 st No Class – Thanksgiving Break	Friday, November 23 rd No Class – Thanksgiving Break
Monday, November 26 th §5.5 <i>u</i> -Substitution	Tuesday, November 27 th §5.5 <i>u</i> -Substitution	Wednesday, November 28 th §6.1 Velocity & Net Change	Friday, November 30 th §6.1 Velocity & Net Change
Monday, December 3 rd §6.2 Areas between Curves	Tuesday, December 4 th §6.2 Areas between Curves	Wednesday, December 5 th Review for Exam	Friday, December 7 th Exam 4
Monday, December 10 th Review for Final			
Final Exam – 2pm Thursday, December 13 th			

Any students with disabilities which might affect their performance in this class should contact me as soon as possible to arrange accommodations.

Coe's faculty has adopted an academic integrity policy. It is your responsibility to understand and follow it.

Diversity, in all its forms, is valuable.