Exam 1 Calc 3 9/28/2012

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. State the formal definition of the partial derivative of a function $\mathrm{f}(x, y)$ with respect to x.
2. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{x^{2}+y^{2}}$ does not exist.
3. Suppose that w is a function of x, y, and z, each of which is a function of s and t. Write the Chain Rule formula for $\frac{\partial w}{\partial t}$. Make very clear which derivatives are partials.
4. Let $f(x, y)=\sqrt{x+x y^{2}}$. Find the directional derivative of f at the point $(5,2)$ in the direction of the vector $\langle 1,1\rangle$.
5. Find an equation for the plane tangent to the surface $z=\ln (1+x y)$ at the point $(2,3, \ln 7)$.
6. Show that for any vectors \vec{a} and \vec{b}, the vector $\vec{a} \times \vec{b}$ is perpendicular to \vec{a}.
7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Man, this Calc 3 stuff is killing me. It's like there's not just three variables, there's three ways to think about everything too, and I'm lucky if I can figure out one. Our T.A. did one of those max problems, and instead of telling if it was a max or a min at this one point by doing the sign on $f_{x x}$, he did the sign on $f_{y y}$, but the book didn't say that. He said it was easier, but I don't get it. I mean, what if $f_{x x}$ was the other sign than $f_{y y}$? Is it both a max and min then?

Explain clearly to Biff whether it was okay for his instructor to use $f_{y y}$, and what to expect of the signs on $f_{x x}$ and $f_{y y}$ at an extremum.
8. Find and classify the critical points of $V(x, y)=x y(18-x-y)$.
9. At which points on the surface $z=x^{2}-y^{2}$ is there at least one direction in which the directional derivative is at least 1 ?
10. Find the directions in which the function $f(x, y)=4 x^{2}-y^{2}$ has zero change at the point (a, b).

Extra Credit (5 points possible):
Let $f(x, y)=\left(x^{2}+y^{2}\right)^{2 / 3}$. Show that

$$
f_{x}(x, y)=\left\{\begin{array}{cl}
\frac{4 x}{3\left(x^{2}+y^{2}\right)^{1 / 3}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array}\right.
$$

