Exam 3 Take-home Portion Calc 3 Due 12/4/2012

Each problem is worth 10 points. For full credit provide complete justification for your answers. You are honor-bound to spend no more than 1 hour working on this exam, and to use no external resources (other people, books, or online sources) while working on it.
8. Let $\mathbf{G}(x, y, z)=\langle 2 y,-1, x\rangle$. Directly evaluate (i.e., without Stokes') $\iint_{S} \operatorname{curl} \mathbf{G} \cdot \mathbf{n} d S$, where S is the cylinder with radius 2 centered on the z-axis between the $x y$-plane and $z=3$, with outward orientation.
9. Let $\mathbf{G}(x, y, z)=\langle 2 y,-1, x\rangle$. Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{G} \cdot \mathbf{n} d S$, where S is the cylinder with radius 2 centered on the z-axis between the $x y$-plane and $z=3$, with outward orientation. [Hint: $\int \sin ^{2} x d x=\frac{x}{2}-\frac{\sin 2 x}{4}+C$.]
10. Let $\mathbf{F}(x, y, z)=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right\rangle$. Use the divergence theorem to evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$, where S is a sphere with radius R centered at the origin and outward orientation.

