Fake Quiz $1 \quad$ Calculus $3 \quad 9 / 25 / 2012$

Each problem is worth 0 points. In the event of an actual quiz, you would have received warning.

1. A company operates two plants which manufacture the same item and whose total cost functions are

$$
C_{1}=8.5+0.03 q_{1}{ }^{2} \text { and } C_{2}=5.2+0.04 q_{2}{ }^{2},
$$

where q_{1} and q_{2} are the quantities produced by each plant. The total quantity demanded, $q=$ $q_{1}+q_{2}$, is related to the price, p, by

$$
p=60-0.04 q .
$$

How much should each plant produce in order to maximize the company's profit? ${ }^{1}$
2. A missile has a guidance device which is sensitive to both temperature, $t^{\circ} \mathrm{C}$, and humidity, h. The range in km over which the missile can be controlled is given by

$$
\text { Range }=27,800-5 t^{2}-6 h t-3 h^{2}+400 t+300 h
$$

What are the optimal conditions for controlling the missile? ${ }^{1}$
3. Some items are sold at a discount to senior citizens or children. The reason is that these groups are more sensitive to price, so a discount has a greater impact on their purchasing decisions. The seller faces an optimization problem: How large a discount to offer in order to maximize profits? Suppose a theater can sell q_{c} child tickets and q_{a} adult tickets at prices p_{c} and p_{a}, according to the demand functions:

$$
q_{c}=r p_{c}^{-4} \quad \text { and } \quad q_{a}=s p_{a}^{-2}
$$

and has operating costs proportional to the total number of tickets sold. What should be the relative price of children's and adult's tickets? ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ These questions are borrowed from Hughes-Hallett, Gleason, McCallum et al.'s Calculus, $3^{\text {rd }}$ edition.

