CALCULUS 3 MTWF 1:00-1:50PM FALL 2012 STUART 405

Instructor: Jonathan White E-Mail: jwhite@coe.edu

Web Page: public.coe.edu/~jwhite

Office: Stuart 316

Office Hours: MTWF 9:30-9:50am, MWF 11:00-11:30, and by appointment

Office Phone: 399-8280

Home Phone: 362-3350 (between 7am and 10pm)

Text: Calculus, Early Transcendentals, 1st Edition, by Briggs & Cochran, Addison-Wesley.

Problem Sets, There will be several problem sets and quizzes during the semester, as well as online WeBWorK

Quizzes & WW: assignments. Together these will be worth 200 points

Math Culture Points:

Math Culture Points will constitute 50 points. These will be earned through participation in

various activities outside of class, as detailed on the third page of this syllabus.

Exams: There will be three in-class exams administered during class time. The dates of these are indicated

in the schedule on the back side of this sheet. These exams will be worth 100 points each. The final exam will be held during finals week at the date and time indicated on the back side of this

sheet. The final will be worth 200 points.

Grading: Grading will approximately follow a 90% A, 80% B, 70% C, 60% D scale. Current grade

information will be available online through Moodle at all times.

Makeups: For the sake of fairness to those who follow the schedule, makeups for exams will be allowed only

under extenuating circumstances, with documentation and advance notice when humanly possible. Late problem sets and quizzes will generally not be accepted, and if accepted due to extenuating circumstances will generally be subject to a penalty of 20% of the possible points for each day past

due. Late WeBWorK will not be accepted.

Any student entering this class should already be aware that calculus is the mathematics of changing quantities. The major development in Calculus 3 is that we widen our scope to functions of more than one variable. This simultaneously adds tremendously to the breadth of phenomena that can be addressed, and also introduces complications that have no analog in the essentially two-dimensional world of Calculus 1 and 2.

Calculus 3 is the culmination of the calculus sequence, and this presents challenges in at least three respects. First, ability to visualize and use spatial intuition is taken to a new level. Second, computations are in some cases correspondingly bigger and longer. Third, abstract theoretical considerations become a more central element, increasingly overshadowing mere computations as the most important material. In response to all three of these considerations the judicious use of technology can be a valuable aid. Sophisticated calculators such as the TI-89 and computer software packages such as *Mathematica*, when used well, can lead to easier and deeper understanding of the course material. However the use of this technology itself involves a significant learning experience, and often significant frustrations. We will attempt to use *Mathematica* in this course when the benefits are the greatest, and assist you in its use enough to keep the frustrations to a minimum.

To enter this class, each student must pass a computer-administered antiderivatives "gateway" exam. You may attempt this exam as often as desired, provided that you demonstrate understanding of previous mistakes before a retake. Success by 5pm Friday, August 31st will count as 5 points toward a student's WeBWorK score, but after 5pm Friday, September 7th course grades will be lowered by 5% for each week or portion of a week without passing this exam.

If at some point the challenges or frustrations of this class get too bad, I strongly encourage you to see me for extra explanation – don't wait until you're overwhelmed. I'm here to help.

CALCULUS 3 MTWF 1:00-1:50PM FALL 2012 STUART 405

Tentative Schedule

Monday, August 27 th §11.1-2 Vectors	Tuesday, August 28 th §11.3 Dot Products	Wednesday, August 29 th §11.4 Cross Products	Friday, August 31 st §11.5 f :ℝ→ℝ ³			
Monday, September 3 rd No Class – Labor Day	Tuesday, September 4^{th} §11.5 $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^3$	Wednesday, September 5 th §12.1 Planes & $f:\mathbb{R}^2 \to \mathbb{R}$	Friday, September 7 th §12.2 Surfaces Graphically			
Monday, September 10^{th} §12.1-2 Planes & $f:\mathbb{R}^2 \to \mathbb{R}$	Tuesday, September 11 th §12.3 Limits & Continuity	Wednesday, September 12 th §12.4 Partial Derivatives	Friday, September 14 th §12.5 Chain Rule			
Monday, September 17 th §12.6 Dir. Der. & Gradients	Tuesday, September 18 th §12.7 Tangent Planes					
Monday, September 24 th §12.9 Constrained Opt.	Tuesday, September 25 th §12.9 Constrained Opt.	Wednesday, September 26 th Review for Exam	Friday, September 28 th Exam 1			
Monday, October 1st §13.1 Double Integrals	Tuesday, October 2 nd §13.1 Double Integrals	Wednesday, October 3 rd §13.2 Double Integrals	Friday, October 5 th §13.2 Double Integrals			
Monday, October 8 th §13.3 Double Int. in Polar	Tuesday, October 9 th §13.4 Triple Integrals					
Monday, October 15 th No Class – Fall Break	Tuesday, October 16 th No Class – Fall Break	Wednesday, October 17 th §13.5 Triple Int. in Spherical	Friday, October 19 th 13.6 Applications			
Monday, October 22 nd 13.6 Applications	Tuesday, October 23 rd §13.7 The Jacobian	Wednesday, October 24 th Review for Exam	Friday, October 26 th Exam 2			
Monday, October 29 th $\$11.6-7 \mathbf{f}': \mathbb{R} \rightarrow \mathbb{R}$	Tuesday, October 30 th §11.6-7 f ':ℝ→ℝ	Wednesday, October 31st §11.8-9 Length & Curvature	Friday, November 2 nd §14.1 Vector Fields			
Monday, November 5 th §14.1 Vector Fields	Tuesday, November 6 th §14.2 Line Integrals	Wednesday, November 7 th §14.2 Line Integrals	Friday, November 9 th §14.3 The Fun. Theorem			
Monday, November 12 th §14.4 Green's Theorem	Tuesday, November 13 th §14.5 Divergence and Curl	Wednesday, November 14 th §14.5 Divergence and Curl	Friday, November 16 th §14.6 Surface Integrals			
Monday, November 19 th §14.6 Surface Integrals	Tuesday, November 20 th §14.7 Stokes Theorem	Wednesday, November 21 st No Class – Thanksgiving Break	Friday, November 23 rd No Class – Thanksgiving Break			
Monday, November 26 th §14.8 Divergence Theorem	Tuesday, November 27 th §14.9 The Fun. Theorem	Wednesday, November 28 th Review for Exam	Friday, November 30 th Exam 4			
Monday, December 3 rd Quadratic Approximations	Tuesday, December 4 th Complex Arithmetic	Wednesday, December 5 th The Complex Plane	Friday, December 7 th Review for Final			
Monday, December 10 th Review for Final						
Final Exam – 11am Friday, December 14 th						

Any students with disabilities which might affect their performance in this class should contact me as soon as possible to arrange accommodations.

The faculty has adopted a policy on academic integrity. It is your responsibility to understand and follow it.

Diversity, in all its forms, is valuable.

CALCULUS 3 MTWF 1:00-1:50PM FALL 2012 STUART 405

Math Culture Points

A portion of the grade for this course will take the form of Math Culture Points. These will be earned through activities outside of class including, but not necessarily limited to, those listed below:

Activity		Maximum
Colloquium Attendance	5	_
Colloquium Presentation	5-15	2
Conference Attendance MIdwestern GrapH TheorY (MIGHTY) (October 21 st -22 nd) Iowa Section of the MAA (October 5 th -6 th)	5-15	2
Mathematics Competition Participation Iowa Mathematical Modeling Competition (October 25 th -27 th) Putnam Competition (December 1 st)	10	2
Math Culture Reading Some weeks specific readings will be posted on the course web page With approval, any relevant column on MAA.org With approval, any relevant article from <i>Math Horizons</i> , <i>CMJ</i> , etc.		- 3 3
Math Club Activities (when appropriate) Movies, Speakers, Game Nights, math portion of Playground of Science, etc.		
Volunteer Math Outreach Working with students at McKinnley Middle School, etc.		2

Generally Math Culture Points can be earned for at most two activities in any given week, so you should plan to spread your participation throughout the semester. In each case above, credit assumes both full participation and submitting a brief summary/response via Moodle. These reflections should generally be between 100 and 300 words, and include both a brief summary and your personal thoughts on the event or reading.