Exam 1A Real Analysis $1 \quad$ 10/5/2012

Each problem is worth 10 points. Show adequate justification for full credit. Don't panic.

1. State the definition of the limit of a sequence a_{n}.
2. State the definition of a Cauchy sequence.
3. State the definition of a function diverging to $-\infty$ as x approaches a from the right.
4. Give an example of a sequence that diverges to $+\infty$ but is not eventually increasing.
5. a) State the Bolzano-Weierstrass Theorem for Sequences
b) State the Cauchy Convergence Criterion.
6. Suppose that f and g are functions with both having domain $D \subseteq \mathbb{R}$. Prove that if $\lim _{x \rightarrow+\infty} f(x)=A$ and $\lim _{x \rightarrow+\infty} g(x)=B$ then $\lim _{x \rightarrow+\infty}(f \cdot g)(x)=A \cdot B$.
7. State and prove the Monotone Convergence Theorem.
8. Why does the definition of a limit as x approaches a need to require that δ be greater than zero?
9. Suppose that a_{n} is a sequence with domain \mathbb{N}. Is the condition that $\forall n \in \mathbb{N}, a_{n}>n$ equivalent to saying a_{n} is unbounded?
10. Suppose that a_{n} is a sequence whose domain is \mathbb{N}, and $S=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ has an accumulation point α. Does there necessarily exist a sequence b_{n} of values from S which converges to α ? Why or why not?
