Exam 2b Calc 3 10/25/2013

Each problem is worth 10 points. For full credit provide complete justification for your answers. All integrals should be set up in terms of a single coordinate system, i.e., if you use cylindrical your integral should involve no x or y, etc.

1. Set up an iterated integral for the area of the rectangle shown (assuming tick marks are at unit intervals)

2. Set up an iterated integral for the volume under $z=10+x$ inside the circle $x^{2}+y^{2}=4$.
3. Set up an iterated integral for the volume below $z=10-2 x$, above the region shown below.

4. Set up an iterated integral for the volume of the region beneath the surface $z=x y+10$ and above the annular region outside $x^{2}+y^{2}=4$ but inside $x^{2}+y^{2}=16$.
5. Reverse the order of integration in $\int_{0}^{2} \int_{x^{2}}^{2 x} f(x, y) d y d x$.
6. Find the Jacobian for converting from rectangular to polar coordinates.
7. Bunny is a calculus student at Enormous State University, and she's having some trouble. Bunny says "Ohmygod, this Calc 3 stuff is soooo confusing! Like, our exam review sheet has a bunch of multiple guess questions, right? And one of them was, like, if you know a function has an average value of 2 for some region, then what's the max it could be someplace on that. How can I do that without a formula or anything?"

Explain clearly to Bunny what can be said about this, and why.
8. Set up iterated integrals for the z coordinate of the centroid of the paraboloid below $z=25-$ $x^{2}-y^{2}$ but above $z=0$.
9. Evaluate the integral $\iint_{R} x y d A$ on the region R with vertices $(0,0),(2,2),(4,0)$, and $(2,-2)$ by using the Jacobian to convert using the transformation $x=u+v, y=u-v$.
10. Set up an iterated integral (or integrals) for the volume of the region under both $z=\cos x$ and $z=\cos y$, but above the plane $z=0$, and within 3 units of the origin.

Extra Credit (5 points possible):
If a function $f(x, y)$ has the property that its integral is 0 on every circle centered at the origin, can you conclude that the function is 0 everywhere? Why or why not?

