Fake Quiz 1 Calc 3 11/21/2014

This is a fake quiz, this is only a fake quiz. In the event of an actual quiz, you'd have been given fair warning. Repeat: This is only a fake quiz.

1. Compute $\int_{C}\left(x^{2}+y^{2}\right) d x-x d y$ along the quarter circle from $(1,0)$ to $(0,1)$.

Integrate the long way to get $-1-\pi / 4$.
2. Evaluate $\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma$ for the hemisphere $S: x^{2}+y^{2}+z^{2}=9, z \geq 0$ and the field $\mathbf{F}=y \mathbf{i}-x \mathbf{j}$.

Use Stokes’ Theorem to get -18π.
3. Evaluate $\int(\sin y \sinh x+\cos y \cosh x) d x+(\cos y \cosh x-\sin y \sinh x) d y$ where C is the line segment from $(1,0)$ to $(2, \pi / 2)$.

Integrate using the Fundamental Theorem for Line Integrals (the potential function is $f=\sin y \cosh x+\cos y$ $\sinh x)$ to get $\cosh 2-\sinh 1$.
4. Evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$, where $\mathbf{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=4 \mathrm{xi}-3 \mathrm{y} \mathbf{j}+7 \mathrm{zk}$ and S is the surface of the cube bounded by the coordinate planes and the planes $x=1, y=1$, and $z=1$.

Integrate using the Divergence Theorem to get 8 .
5. Evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+2 z \mathbf{k}$ and S is the portion of the cone $z^{2}=x^{2}+y^{2}$ between the planes $z=1$ and $z=2$, oriented upwards.

Integrate the long way to get $14 \pi / 3$.
6. Evaluate $\int_{C}\left(x^{2}-y\right) d x+x d y$, where C is the circle $x^{2}+y^{2}=4$ with counterclockwise orientation.

Use Green's Theorem to get 8π.
7. Evaluate $\iint_{S}\left\langle x^{3}, x^{2} y, x y\right\rangle \cdot d \mathbf{S}$, where S is the surface of the solid bounded by $\mathrm{z}=4-x^{2}, y+z=5, z=0$, and $y=0$.

Use the Divergence Theorem to get 4608/35 .
8. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y, z)=y \mathbf{i}+z \mathbf{j}-x \mathbf{k}$ and C is the line segment from $(1,1,1)$ to $(-3,2,0)$.

Integrate the long way to get -13/2.
9. Compute $\int_{C}\left\langle\ln (1+y),-\frac{x y}{1+y}\right\rangle \cdot d \mathbf{r}$ where C is the triangle with vertices $(0,0),(2,0)$, and $(0,4)$.

Use Green's Theorem to get -4 .
10. Evaluate $\int_{(0,1)}^{(\pi,-1)} y \sin x d x-\cos x d y$.

Use the Fundamental Theorem for Line Integrals (the potential function is $f=-y \cos x$) to get 0 .
11. Compute, $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=2 y \mathbf{j}+\mathbf{k}$ and S is the portion of the paraboloid $z=x^{2}+y^{2}$ below the plane $z=4$ with positive orientation.

Use the long way to get -12π.
12. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y, z)=\langle 4 x, 7 y,-3 z\rangle$ and C is the boundary of the first-octant portion of a sphere with radius 5 (centered at the origin).

Use Stokes' Theorem to conclude that, since curl \mathbf{F} is 0 , the surface integral (and hence the line integral) is 0 .

