You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 5 points for correct and clearly justified answers.

1. Do \#67 in §12.3. Explain well why your answer makes sense.
2. A study of frost penetration found that the temperature T at time t (measured in days) at depth d (measured in feet) could be modeled by the function

$$
T(d, t)=T_{0}+T_{1} e^{-\lambda d} \sin (\omega t-\lambda d)
$$

where $\omega=2 \pi / 365$ and λ is a positive constant.
a) Find $\partial T / \partial d$. What is its sign? What is its physical significance?
b) Find $\partial T / \partial t$. What is its sign? What is its physical significance?
3. Find an equation for the line through the origin and the point $(1,2,3)$. Determine where this line intersects the paraboloid $z=x^{2}+y^{2}$, and describe the angle at which the line intersects the surface.
4. Show that the equation of the tangent plane to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ can be written as $\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}+\frac{z z_{0}}{c^{2}}=1$.

