REAL ANALYSIS 1 MWF 10:00-10:50AM FALL 2014 STUART 309

Instructor:	Jonathan White
E-Mail:	jwhite@coe.edu
Web Page:	public.coe.edu/~jwhite/
Office:	Stuart 316
Office Hours:	MTWF 9:10-9:50am and by appointment
Office Phone:	399-8280
Home Phone:	362-3350 (between 7am and 10pm)
Texts:	<i>A Friendly Introduction to Analysis, Single and Multivariable</i> , 2 nd Edition, by Witold Kosmala, Prentice-Hall; <i>A Tour of the Calculus</i> , by David Berlinski.
Problem Sets:	Problem Sets will be given throughout the term to supplement class work. Combined these will be worth 200 points.
Math Culture Points:	Math Culture Points will constitute 100 points. These will be earned through participation in various activities outside of class, as detailed elsewhere.
Exams:	There will be two exams during the course of the semester, administered during class time. The dates of these are indicated in the schedule on the back side of this sheet. These exams will be worth 100 points each.
	The final exam will be held during finals week at the date and time indicated on the back side of this sheet. The final will be worth 200 points.
Grading:	Grading will approximately follow a $[92.0\%, \infty) \rightarrow A$, $[90\%, 92\%) \rightarrow A-$, $[87\%, 90\%) \rightarrow B+$, $[82\%, 87\%) \rightarrow B$, $[80\%, 82\%) \rightarrow B-$, $[77\%, 80\%) \rightarrow C+$, $[72\%, 77\%) \rightarrow C$, $[70\%, 72\%) \rightarrow C-$, $[67\%, 70\%) \rightarrow D+$, $[62\%, 67\%) \rightarrow D$, $[60\%, 62\%) \rightarrow D-$, $(-\infty, 60\%) \rightarrow F$ scale. Current grade information will be available online via Moodle.

"And what are these fluxions? The velocities of evanescent increments. And what are these same evanescent increments? They are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them ghosts of departed quantities?"

-Bishop George Berkeley, 1685-1753

Real Analysis is in many ways a dramatically different course than anything which precedes it in the mathematics curriculum. In some regards, students finally get a chance to see the sorts of things that professional mathematicians deal with -- but at the same time, many of these underpinnings are beneath notice once they've been properly laid. The simplest thing that can safely be said is that there are genuinely troubling issues left unaddressed by the undergraduate calculus sequence, and they must be dealt with before moving on.

It is also important to note at this point that the demands on students become qualitatively different in this course than in its prerequisites. Learning strategies which have succeeded in previous classes will not necessarily suffice at this level. If at some point these challenges or frustrations get too bad, I strongly encourage you to see me for extra explanation -- don't wait until you're overwhelmed. I'm here to help.

REAL ANALYSIS 1 MWF 10:00-10:50AM FALL 2014 STUART 309

Tentative Schedule

Monday, August 25 th	Wednesday, August 27 th	Friday, August 29 th
§1.7 Real Numbers	§1.8 Properties of Real Numbers	§1.9 Review
Monday, September 1 th	Wednesday, September 3 rd	Friday, September 5 th
No Class – Labor Day	§2.1 Convergence	§2.2 Limit Theorems
Monday, September 8 th	Wednesday, September 10 th	Friday, September 12 th
§2.3 Infinite	§2.4 Monotone Sequences	§2.5 Cauchy Sequences
Monday, September 15 th	Wednesday, September 17 th	Friday, September 19 th
§2.5 Cauchy Sequences	§2.6 Subsequences	§2.7 Review
Monday, September 22 nd	Wednesday, September 24 th	Friday, September 26 th
§3.1 Limit at Infinity	§3.2 Limit at a Real Number	§3.2 Limit at a Real Number
Monday, September 29 th	Wednesday, October 1 st	Friday, October 3 rd
§3.3 One-Sided Limits	§3.4 Review	Exam 1
Monday, October 6 th	Wednesday, October 8 th	Friday, October 10 th
§4.1 Continuity	§4.2 Discontinuity	§4.3 Properties of Continuous Functions
Monday, October 13 th	Wednesday, October 15 th	Friday, October 17 th
No Class – Fall Break	§4.3 Properties of Continuous Functions	§4.4 Uniform Continuity
Monday, October 20 th	Wednesday, October 22 nd	Friday, October 24 th
§4.5 Review	§4.6 Compactness	§5.1 Derivatives
Monday, October 27 th	Wednesday, October 29 th	Friday, October 31 st
§5.2 Properties of Differentiable Func.	§5.3 Mean Value Theorems	§5.4 Higher Derivatives
Monday, November 3 rd	Wednesday, November 5 th	Friday, November 7 th
§5.5 L'Hôpital's Rules	§5.6 Review	Exam 2
Monday, November 10 th	Wednesday, November 12 th	Friday, November 14 th
§6.1 Riemann Integrals	§6.1 Riemann Integrals	§6.2 Integrable Functions
Monday, November 17 th	Wednesday, November 19 th	Friday, November 21 st
§6.2 Integrable Functions	§6.3 Properties of Riemann Integrals	§6.4 Integration and Differentiation
Monday, November 24 th	Wednesday, November 26 th	Friday, November 28 th
§6.4 Integration and Differentiation	No Class – Thanksgiving Break	No Class – Thanksgiving Break
Monday, December 1 st	Wednesday, December 3 rd	Friday, December 5 th
§6.5 Improper Integrals	§6.7 Review	Dedekind Cuts
Monday, December 8 th Final Review		
	1 Final Exam – 8am on Monday, December 1	1.5 th

Any students with disabilities which might affect their performance in this class should contact me as soon as possible to arrange accommodations.

The faculty has adopted a policy on academic integrity. It is your responsibility to understand and follow it.

Diversity, in all its forms, is valuable.

REAL ANALYSIS 1 MWF 10:00-10:50AM FALL 2014 STUART 309

Math Culture Points

A portion of the grade for this course will take the form of Math Culture Points. These will be earned through activities outside of class including, but not necessarily limited to, those listed below:

Activity		Maximum
Colloquium Attendance		_
Colloquium Presentation	5-15	2
Conference Attendance Iowa Section of the MAA		2
Mathematics Competition Participation Iowa Mathematical Modeling Competition Putnam Competition		2
Math Culture Reading Some weeks specific readings will be posted on the course web page Selected readings from Berlinski's <i>Tour</i> With approval, any relevant column on MAA.org With approval, any relevant article from <i>Math Horizons</i> , <i>CMJ</i> , etc.		$ \begin{array}{c} -\\ 10\\ 3\\ 3 \end{array} $
Math Club Activities (when appropriate) Movies, Speakers, Game Nights, math portion of Playground of Science, etc.		
Volunteer Math Outreach Working with students at McKinnley Middle School, etc.		2

Generally Math Culture Points can be earned for at most two activities in any given week, so you should plan to spread your participation throughout the semester. In each case above, credit assumes both full participation and submitting a brief summary/response via Moodle. These reflections should generally be between 100 and 300 words, and include both a brief summary and your personal thoughts on the event or reading.