Exam 2 Calc 1 10/15/2015

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. State the formal definition of the derivative of a function $f(x)$.
2. If $g(x)=\tan x+\arcsin x+x^{3}+e^{x}+7$, find $g^{\prime}(x)$.
3. Use the definition of the derivative to find the derivative of $f(x)=x^{2}$.
4. Show that the derivative of $f(x)=k$ is $f^{\prime}(x)=0$.
5. Use the definition of the derivative to find the derivative of $f(x)=\sin x$.
6. State and prove the Product Rule for derivatives. Make it clear how you use any assumptions.
7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Crap. This Calculus stuff is pretty rough. So, like, the product rule I did okay, but now we're doing the chain rule and I'm pretty mixed up. Our professor was going on and on about how you've gotta know if it's f of g or g of f. But I was thinking it didn't even matter, since, like, if it's sine of x squared, that's the same whether you do the square and then sine or other way around. Like, with 0 , sine 0 is 0 , then square and it's 0 , so it doesn't matter, right?"

Help Biff by explaining as clearly as you can whether his reasoning holds, or if there are limitations
8. Show why the derivative of $y=\ln x$ is $y^{\prime}=1 / x$.
9. a) What is the derivative of $\arcsin x$?
b) Show why.
10. a) Find the derivative with respect to x of the curve $x^{3}+y^{3}=x y+1$.
b) Write an equation for the line tangent to the curve from part a at the point $(1,-1)$.

Extra Credit (5 points possible): Let $f(x)=x^{x}$. What's $f^{\prime}(x)$?

