## Quiz 2 Calculus $1 \quad$ Due 11/19/2015

Each problem is worth 5 points. Clear and complete justification is required for full credit.

1. If you use a left-hand sum with $n=4$ subdivisions to approximate $\int_{1}^{5} \frac{1}{x} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& c_{1}= \\
& c_{2}= \\
& c_{3}= \\
& c_{4}= \\
& f\left(c_{1}\right)= \\
& f\left(c_{2}\right)= \\
& f\left(c_{3}\right)= \\
& f\left(c_{4}\right)= \\
& \sum_{i=1}^{4} f\left(c_{i}\right) \cdot \Delta x=
\end{aligned}
$$

## Quiz $2 \quad$ Calculus $1 \quad$ Due 11/19/2015

2. If you use a right-hand sum with $n=4$ subdivisions to approximate $\int_{1}^{3} x^{2} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& c_{1}= \\
& c_{2}= \\
& c_{3}= \\
& c_{4}= \\
& f\left(c_{1}\right)= \\
& f\left(c_{2}\right)= \\
& f\left(c_{3}\right)= \\
& f\left(c_{4}\right)= \\
& \sum_{i=1}^{4} f\left(c_{i}\right) \cdot \Delta x=
\end{aligned}
$$

## Quiz 2 Calculus $1 \quad$ Due 11/19/2015

3. If you use a midpoint sum with $n=8$ subdivisions to approximate $\int_{1}^{5} \frac{1}{x} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& c_{1}= \\
& c_{2}= \\
& c_{3}= \\
& c_{4}= \\
& c_{5}= \\
& c_{6}= \\
& c_{7}= \\
& c_{8}= \\
& f\left(c_{1}\right)= \\
& f\left(c_{2}\right)= \\
& f\left(c_{3}\right)= \\
& f\left(c_{4}\right)= \\
& f\left(c_{5}\right)= \\
& f\left(c_{6}\right)= \\
& f\left(c_{7}\right)= \\
& f\left(c_{8}\right)= \\
& \sum_{i=1}^{8} f\left(c_{i}\right) \cdot \Delta x=
\end{aligned}
$$

## Quiz 2 Calculus $1 \quad$ Due 11/19/2015

4. If you use a right-hand sum with $n$ subdivisions to approximate $\int_{1}^{3} x^{2} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& c_{k}= \\
& f\left(c_{k}\right)= \\
& \sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x= \\
& \lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x=
\end{aligned}
$$

