You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 5 points for correct and clearly justified answers.

1. Do \#67 in §12.3. Explain well why your answer makes sense.
2. Let $f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$.
a) Find f_{x} and f_{y}.
b) Find $f_{x y}(0,0)$ and $f_{y x}(0,0)$.
c) Explain briefly what this has to do with Clairaut's Theorem.
3. Find an equation for the line through the origin and the point $(3,2,1)$. Determine where this line intersects the hyperboloid $1=x^{2}+y^{2}-z^{2}$, and describe the angle at which the line intersects the surface.
4. a) Show that the equation of the tangent plane to the elliptic paraboloid $\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ can be written as $\frac{2 x x_{0}}{a^{2}}+\frac{2 y y_{0}}{b^{2}}=\frac{z+z_{0}}{c}$.
b) Find the point of intersection of this tangent plane with the z-axis, and compare it with the coordinates of the point of tangency.
