You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 5 points for correct and clearly justified answers.

1. Do \#52 in §13.2.
2. Use a double integral to find the volume of the solid with right triangular base with legs of length a and b, but extending up from that base in such a way that the three vertical edges are of lengths h_{a}, h_{b}, and h_{v}, with the top surface being a plane.

3. Do \#70 in §13.2.
4. Consider a paraboloidal solid between $z=1-x^{2}-y^{2}$ and $z=0$. Suppose the density varies linearly between 1 at the bottom and k at the top.
a) Find the total mass of the solid.
b) For which value of k will the center of mass be halfway up the paraboloid?
