Exam 1a Calc $1 \quad 9 / 16 / 2016$

Each problem is worth 10 points. For full credit provide complete justification for your answers.
Use the graph of $g(x)$ at the bottom of the page for problems 1 and 2:

1. Find the following limits:
a) $\lim _{x \rightarrow-3^{-}} g(x)$
b) $\lim _{x \rightarrow-3^{+}} g(x)$
c) $\lim _{x \rightarrow-3} g(x)$
d) $\lim _{x \rightarrow 5^{+}} g(x)$
e) $\lim _{x \rightarrow 5^{-}} g(x)$
f) $\lim _{x \rightarrow 5} g(x)$
2. For which values of x does the function fail to be continuous?

3. Evaluate $\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x^{2}-9}$
4. Let $f(x)=\left\{\begin{array}{cl}\sqrt{-x} & \text { if } x<0 \\ 3-x & \text { if } 0 \leq x<3 \text {. Evaluate each limit, if it exists: } \\ (x-3)^{2} & \text { if } x>3\end{array}\right.$
a) $\lim _{x \rightarrow 0^{-}} f(x)=$
b) $\lim _{x \rightarrow 0^{+}} f(x)=$
c) $\lim _{x \rightarrow 0} f(x)=$
d) $\lim _{x \rightarrow 3^{-}} f(x)=$
e) $\lim _{x \rightarrow 3^{+}} f(x)=$
f) $\lim _{x \rightarrow 3} f(x)=$
5. If a mango is thrown straight up into the air with an initial velocity of $90 \mathrm{ft} / \mathrm{s}$, its height in feet after t seconds is given by $y=90 t-16 t^{2}$. Find the average velocity for the time period beginning when $t=1$ and lasting
a) 0.5 seconds
b) 0.1 seconds
c) 0.01 seconds
6. a) Evaluate $\lim _{x \rightarrow 5^{-}} \frac{2 x^{2}+3}{(x-5)(x+2)}$.
b) Evaluate $\lim _{x \rightarrow \infty} \frac{2 x^{2}+3}{(x-5)(x+2)}$.
7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Well, crap. Our Calc class makes this big deal about stuff being numeric sometimes, which I thought was pretty much always how math was, right? But there was this one question on our test prep stuff they gave us, like that you want a limit for close to 0 , right? And the function was, like sin π / x, right? And if you plugged in 0.1 , and then you plugged in 0.01 , and then you plugged in 0.001 , then every time you get 0 , right? But so they said it like you were supposed to say how you know the limit isn't really 0 , but I say, three times in a row can't be an accident, right?"

Help Biff by explaining as clearly as you can why $\lim _{x \rightarrow 0} \sin \frac{\pi}{x}$ is not 0 , despite the numerical evidence he mentions.
8. Evaluate $\lim _{h \rightarrow 0} \frac{(5+h)^{2}-5^{2}}{h}$.
9. Is there a number that is exactly 1 more than its cube? How can you be sure?
10. Consider a continuous function with the following properties:

$$
\lim _{x \rightarrow \infty} f(x)=1 \quad \lim _{x \rightarrow-\infty} f(x)=1 \quad f(0)=3
$$

a) Sketch a graph of a function having the properties listed above.
b) Find a formula for such a function.

Extra Credit (5 points possible):
Evaluate $\lim _{x \rightarrow \infty} \sqrt{3 x^{2}+8 x+6}-\sqrt{3 x^{2}+3 x+1}$.

