Fake Exam 4 Calc $1 \quad$ 11/16/2016

Each problem is worth 0 points. For full credit learn enough to do well on the real exam.

1. Evaluate $\lim _{x \rightarrow-5} \frac{x^{2}-25}{5-4 x-x^{2}}$.
2. Evaluate $\lim _{x \rightarrow \infty} \frac{x^{2}-25}{5-4 x-x^{2}}$.
3. Find all vertical asymptotes of $f(x)=\frac{x^{2}-25}{5-4 x-x^{2}}$. Determine the one-sided limits at each.
4. a) Find the intervals on which $f(x)=\frac{x^{2}-25}{5-4 x-x^{2}}$ is increasing.
b) Find the intervals on which $f(x)=\frac{x^{2}-25}{5-4 x-x^{2}}$ is decreasing.
5. Find all critical points of $f(x)=2 x^{3}-5 x^{2}+2 x-7$.
6. Find the largest interval on which $f(x)=2 x^{3}-5 x^{2}+2 x-7$ is decreasing.
7. Find the absolute maximum and minimum values of $f(x)=2 x^{3}-5 x^{2}+2 x-7$ on $[0,2]$.
8. Find the largest interval on which $f(x)=2 x^{3}-4 x^{2}+2 x-7$ is concave down.
9. Find the x-intercept of $f(x)=2 x^{3}-5 x^{2}+2 x-7$.
10. Jon plans to sell jet-propelled golf balls. In his trial program he sold 200 golf balls each week at a price of $\$ 100$ apiece. His market research firm tells him that for each $\$ 1$ he drops his price, he can sell 5 additional golf balls. The golf balls cost $\$ 60$ each to produce. What price should he charge to bring in the largest possible revenue?
