Fake Exam 4 Calc $1 \quad$ 11/16/2016

Each problem is worth 0 points. For full credit learn enough to do well on the real exam.

1. Evaluate $\lim _{x \rightarrow-5} \frac{x^{2}-25}{5-4 x-x^{2}}$.

It should work out to $-5 / 3$.
2. Evaluate $\lim _{x \rightarrow \infty} \frac{x^{2}-25}{5-4 x-x^{2}}$.

It should be -1 .
3. Find all vertical asymptotes of $f(x)=\frac{x^{2}-25}{5-4 x-x^{2}}$. Determine the one-sided limits at each.

The actual vertical asymptote is at $\mathrm{x}=1$. The limit approaching it from the left is $-\infty$ and the limit approaching it from the right is $+\infty$.
4. a) Find the intervals on which $f(x)=\frac{x^{2}-25}{5-4 x-x^{2}}$ is increasing.
b) Find the intervals on which $f(x)=\frac{x^{2}-25}{5-4 x-x^{2}}$ is decreasing.

It works out to have a negative derivative for all x except 1 , so it's decreasing on $(-\infty, 1)$ and $(1,+\infty)$.
5. Find all critical points of $f(x)=2 x^{3}-5 x^{2}+2 x-7$.

$$
\frac{5+\sqrt{13}}{6} \text { and } \frac{5-\sqrt{13}}{6}
$$

6. Find the largest interval on which $f(x)=2 x^{3}-5 x^{2}+2 x-7$ is decreasing.

$$
\left(\frac{5-\sqrt{13}}{6}, \frac{5+\sqrt{13}}{6}\right)
$$

7. Find the absolute maximum and minimum values of $f(x)=2 x^{3}-5 x^{2}+2 x-7$ on $[0,2]$.

For the question as it appears, the maximum is $f\left(\frac{5-\sqrt{13}}{6}\right)$ and the minimum is $f\left(\frac{5+\sqrt{13}}{6}\right)$. I wish I'd asked about [0,3], in which case the maximum instead is $\mathrm{f}(3)=8$.
8. Find the largest interval on which $f(x)=2 x^{3}-4 x^{2}+2 x-7$ is concave down. $(-\infty, 2 / 3)$
9. Find the x-intercept of $f(x)=2 x^{3}-5 x^{2}+2 x-7$.

Newton's Method is one good tool. If you use $x_{0}=2$, you'll get $x_{1}=19 / 6$. The actual root is around 2.626598 , but that takes a lot of iteration.
10. Jon plans to sell jet-propelled golf balls. In his trial program he sold 200 golf balls each week at a price of $\$ 100$ apiece. His market research firm tells him that for each $\$ 1$ he drops his price, he can sell 5 additional golf balls. The golf balls cost $\$ 60$ each to produce. What price should he charge to bring in the largest possible revenue?

As it's printed, to maximize the revenue, he should raise the price by $\$ 30$, so the price should be $\$ 130$.

If on the other hand he's smart enough to maximize profit (revenue minus cost), then he should raise the price by $\$ 24$, so the price should be $\$ 124$ to maximize profit.

