Quiz 4 Calculus 1 Due 12/2/2016

Each problem is worth 5 points. Clear and complete justification is required for full credit.

1. If you use a left-hand sum with $n=4$ subdivisions to approximate $\int_{1}^{5} \frac{1}{x} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& x_{1}^{*}= \\
& x_{2}^{*}= \\
& x_{3}^{*}= \\
& x_{4}^{*}= \\
& f\left(x_{1}^{*}\right)= \\
& f\left(x_{2}^{*}\right)= \\
& f\left(x_{3}^{*}\right)= \\
& f\left(x_{4}^{*}\right)= \\
& \sum_{i=1}^{4} f\left(x_{i}^{*}\right) \cdot \Delta x=
\end{aligned}
$$

Quiz 4 Calculus 1 Due 12/2/2016

2. If you use a right-hand sum with $n=4$ subdivisions to approximate $\int_{1}^{3} x^{2} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& x_{1}^{*}= \\
& x_{2}^{*}= \\
& x_{3}^{*}= \\
& x_{4}^{*}= \\
& f\left(x_{1}^{*}\right)= \\
& f\left(x_{2}^{*}\right)= \\
& f\left(x_{3}^{*}\right)= \\
& f\left(x_{4}^{*}\right)= \\
& \sum_{i=1}^{4} f\left(x_{i}^{*}\right) \cdot \Delta x=
\end{aligned}
$$

