Exam 1 Calc 3 9/23/2016

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. State the formal definition of the partial derivative of a function $f(x, y)$ with respect to x.
2. Suppose that w is a function of x, y, and z, each of which is a function of t. Write the Chain Rule formula for $\frac{d w}{d t}$. Make very clear which derivatives are partials.
3. Find an equation for the plane tangent to $f(x, y)=4 x^{2}-y^{2}$ at the point $(1,-3,-5)$.
4. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y-x^{2}}{x^{2}+y^{2}}$ does not exist.
5. Let $f(x, y)=x^{2} y^{3}$, and let $P=(1 / 6,3)$
a) At the point P, find the directional derivative in the direction of $\mathbf{v}=\mathbf{i}+\mathbf{j}$.
b) In which direction is the directional derivative greatest at P, and how large is the directional derivative in that direction?
6. Show that for any vectors \vec{a} and \vec{b}, the vector $\vec{a} \times \vec{b}$ is perpendicular to \vec{a}.
7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Crap, this Calc 3 stuff is killing me. I understood pretty good about derivatives, because they're pretty much like Calc 1 , and that's okay, right? But crap, now this second derivative test just has too much crap going on for me to get it straight. And especially the stuff where D is zero, you know? I figured one out with help from my buddy where D was 0 , but it was really a max. Isn't it really that 0 always means it's a max, and they're just not telling us `cause they want to make it as hard as they can?"

Explain clearly to Biff whether he can count on all critical points where D is 0 being maxima, or not, and why.
8. Find the minimum value of $f(x, y)=2 x+3 y$ subject to the constraint $x^{2}+y^{2}=25$.
9. Find and classify all critical points of $f(x, y)=y^{3}+3 x^{2} y-6 x^{2}-6 y^{2}+2$.
10. Jon wants to 3d-print a solid that transitions smoothly from the paraboloid $z=9-x^{2}-y^{2}$ between $z=0$ and $z=8$, into a portion of a cone above $z=8$. The cone will need to match the radius and slope of the paraboloid at the height where they join. The cone will have an equation of the form $z=d-m \sqrt{x^{2}+y^{2}}$. What are the appropriate values for d and m ?

Extra Credit (5 points possible):

Find the point in the first quadrant on the curve $y=x+x^{-1}$ closest to the origin.

