Exam 3 Calculus 3 12/2/2016

Each problem is worth 10 points. Show adequate justification for full credit. Please circle all answers and keep your work as legible as possible.

$$
\begin{aligned}
& \int \sin ^{2} u d u=\frac{1}{2} u-\frac{1}{4} \sin 2 u+C \\
& \int \cos ^{2} u d u=\frac{1}{2} u+\frac{1}{4} \sin 2 u+C
\end{aligned}
$$

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

1. Parametrize and give bounds for a counterclockwise circle, centered at the origin, with radius 5 , beginning and ending at $(5,0)$.
2. Evaluate $\int_{C}\left(x^{2}-y\right) d x+x d y$, where C is the circle $x^{2}+y^{2}=4$ with counterclockwise orientation.
3. Let $\mathbf{F}(x, y, z)=\left\langle 3 y, 2 x+5 y-z, x^{2}+2 z\right\rangle$. Evaluate $\operatorname{div} \mathbf{F}$.
4. Let $\mathbf{F}=\langle-\sin x \cos y,-\cos x \sin y\rangle$, and let C be a line segment from $(0,0)$ to $(2 \pi, \pi)$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
5. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=y \mathbf{i}+z \mathbf{j}-x \mathbf{k}$ and C is the line segment from $(2,-3,0)$ to $(0,0,7)$.
6. Prove that if $\mathbf{F}(x, y, z)$ is a vector field whose component functions have continuous secondorder partial derivatives, then $\operatorname{div}(\operatorname{curl} \mathbf{F})=0$. Make it clear how the requirement that the partials be continuous is important.
7. Bunny is a calc 3 student at a large state university and she's having some trouble. Bunny says "Ohmygod, I totally hate true/false math test questions! There was this one, it said a circulation in a conservative vector field is always zero. I marked it false because I don't think very many things are always true, you know? But it turned out it is. What does that mean, anyway?"

Explain as clearly as possible to Bunny how she could know that a circulation in a conservative vector field is always zero.
8. Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=\left\langle 0,0, z^{3} / 3\right\rangle$ and S is the sphere $x^{2}+y^{2}+z^{2}=1$.
9. Let \mathbf{F} be the vector field $\mathbf{F}=y^{2} \mathbf{i}+x z \mathbf{j}-x \mathbf{k}$. Let S be the portion of the paraboloid $y=x^{2}+z^{2}$ to the left of $y=36$, with normal vectors oriented in the positive y direction. Find $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$.
10. Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=\langle x, y, 2 z\rangle$ and S is the portion of the plane $z=3$ that lies within the cylinder with equation $x^{2}+y^{2}=9$, oriented upwards.

Extra Credit (5 points possible): Let $\mathbf{F}(x, y, z)=\left\langle x / r^{3}, y / r^{3}, z / r^{3}\right\rangle$, where here
$r=\sqrt{x^{2}+y^{2}+z^{2}}$. Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is a sphere with radius 1 centered at the point (a, b, c).

