You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 3 points for correct and clearly justified answers, and spelling your name correctly on your submission is worth 1 point.

1. [Based on Rogawski \& Adams 3rd §15.5 Example 7] Without proper maintenance, the times to failure (in months) of two sensors in an aircraft are random variables X and Y with joint density function

$$
p(x, y)= \begin{cases}\frac{1}{864} e^{-x / 24-y / 36} & \text { for } x \geq 0, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

What is the probability that neither sensor functions after 1 year?

It sets up almost identically to Example 7 in the text, so

$$
\int_{0}^{12} \int_{0}^{12} \frac{1}{864} e^{-x / 24-y / 36} d y d x
$$

Mathematica says that works out to about 0.0111536 .
2. [Based on Rogawski \& Adams 3rd §15.5 \#51] The lifetime (in months) of two components in a certain device are random variables X and Y with joint density function

$$
p(x, y)= \begin{cases}\frac{1}{9216}(48-2 x-y) & \text { for } x \geq 0, y \geq 0,2 x+y \leq 48 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate the probability that both components function at least 6 months without failing.

It sets up almost identically to the homework problem in the text, and the top view is very similar to the one given there - note how the 18 there becomes a 21 here, so we have

$$
\int_{6}^{21} \int_{6}^{48-2 x} \frac{1}{9216}(48-2 x-y) d y d x
$$

which Mathematica says is $\frac{125}{512} \approx 0.244141$.
3. The waiting time for certain support phone calls includes an intial hold period of length x and a subsequent hold period of length y once the call is directed to an approiate specialist, for the random variables X and Y with joint density function

$$
p(x, y)= \begin{cases}\frac{1}{15} e^{-x / 3-y / 5} & \text { for } x \geq 0, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

What is the probability that the total hold time for such a call is over 10 minutes?

Look at the top view. The easiest way to approach it is to find the integral representing calls less than 10 minutes, so where $x+y \leq 10$, and then conclude that the probability we want is the rest, or 1 minus that share. So the integral we set up is

$$
\int_{0}^{10} \int_{0}^{10-x} \frac{1}{15} e^{-x / 3-y / 5} d y d x
$$

Mathematica says that works out to about 0.715173 , so the probability of a call lasting longer than 10 minutes is $1-0.715173=0.284827$.

