Exam 2b Real Analysis 1 11/3/16

Each problem is worth 10 points. Show adequate justification for full credit. Don't panic.

1. a) State the definition of the derivative of a function $f(x)$ at $x=a$.
b) State the definition of continuity of a function $f(x)$ at $x=a$.
2. a) State the definition of a set E being closed.
b) State the definition of a set E being open.
3. a) State the Intermediate Value Theorem.
b) State Fermat's Theorem.
4. a) State the definition of a compact set.
b) State the Heine-Borel Theorem.
c) Give an example of a set with an open cover that has no finite subcover.
5. a) State the definition of uniform continuity.
b) Give an example of a function which is continuous at every real number, but not uniformly continuous on \mathbb{R}.
6. State and prove the Product Rule for Derivatives.
7. State and prove the Mean Value Theorem.
8. State and prove the Extreme Value Theorem.
9. a) Prove or give a counterexample: If f^{\prime} is bounded, then f is bounded.
b) Prove or give a counterexample: If f is bounded, then f^{\prime} is bounded.
10. a) Prove or give a counterexample: If a function is defined on $[a, b]$ and continuous on (a, b), then it attains its maximum and minimum values on $[a, b]$.
b) Prove or give a counterexample: If a function is continuous and bounded on \mathbb{R}, then it attains its maximum and minimum values.
