Exam 2 Calc 3 10/26/2017

Each problem is worth 10 points. For full credit provide complete justification for your answers. All integrals should be set up in terms of a single coordinate system, i.e., if you use cylindrical your integral should involve no x or y, etc.

1. Set up an iterated integral for the volume below $z=f(x, y)$ and above the $x y$-plane on the region R, a triangle with vertices $(0,0),(3,6)$, and $(0,6)$.
2. Set up an iterated integral for the volume below $z=7$ and above the $x y$-plane on the region R pictured below (the diagonal boundaries are the lines $y=x$ and $y=-x$):

3. Set up an iterated integral for the volume of the solid enclosed between the surface $z=x^{2}+y^{2}$ and the surface $z=72-x^{2}-y^{2}$.
4. Set up an iterated integral for the volume of the solid lying within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane, and outside the cone $z=2 \sqrt{x^{2}+y^{2}}$.
5. Evaluate $\iint_{D} x \cos y d A$, where D is bounded by $y=0, y=x^{2}$, and $x=2$.
6. Compute the Jacobian for the conversion from rectangular to cylindrical coordinates.
7. Bunny is a calculus student at Enormous State University, and she's having some trouble. Bunny says "Ohmygod, this Calc 3 stuff is just too much. I used to think symmetrical always made things easier, but now I'm really confused. I guess sometimes with the double integral thingies you can go from, like, -3 to 3 both ways, or instead go from 0 to 3 and then times it by 4 , right? But I think they were saying that you can't always. How do you tell when you can?

Give Bunny examples and explain why sometimes it would be okay in a double integral to use symmetry, and which times it wouldn't (at least one example each way).
8. Set up iterated integrals for the z-coordinate of the centroid of the solid bounded between the $x y$-plane and $z=9-x^{2}-y^{2}$.
9. Evaluate $\iint_{R} x y d A$, where R is the region in the first quadrant bounded by the lines $y=x$ and $y=3 x$ and the hyperbolas $x y=1, x y=5$ by using the transformation $x=u / v, y=v$.
10. Consider the region under the surface $z=18-2 x^{2}-2 y^{2}$, above the $x y$-plane, and with $x \leq 2$. Set up an iterated integral for the volume of this solid.

Extra Credit (5 points possible):
Evaluate $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d x d y d z$.

