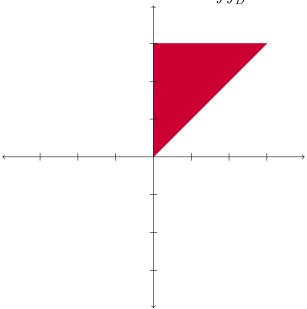
Each problem is worth 10 points. For full credit provide good justification for your answers.

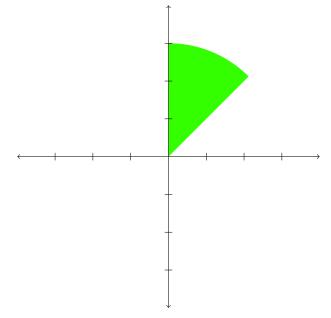
1. Write a double Riemann sum for $\iint_R f \, dA$, where $R = \{(x,y): 0 \le x \le 6, 2 \le y \le 6\}$ using midpoints with n=m=2 subdivisions

2. Set up a double integral for the integral from #1.

3. Set up limits of integration for $\iint_D f(x,y) dA$ over the region shown below.



4. Set up limits of integration for finding the volume under g(x,y) = 10 - x within the region shown below:



5. Evaluate $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \int_{0}^{\sqrt{4-x^2-y^2}} 3 \, dz \, dy \, dx$

6.	 Show what	that it is.	the	Jacobia	ın fo	r the	conversion	n from	rectangular	to	polar	coordinates	s is

7. Muffy is a calculus student at E.S.U., and she's having trouble with multiple integrals. Muffy says "Ohmygod, I so totally failed my Calc exam. There were totally impossible problems on it, and I think it's totally bad, and my daddy is going to sue the school. There was this one that was like, you were supposed to find the region-thingy for this integral $\iiint_D 4 - x^2 - y^2 dV$ to be the biggest it could be, and I said, like, obviously it's bigger if you do it for a bigger regionthingy, right? So, it must be biggest if you have D be like all negative infinity to infinity, right? But I got no points, so Daddy's going to get the professor fired."

Clarify for Muffy, in terms she can understand, how she should think about a problem like this, and what region D in fact maximizes the given integral.

8. Evaluate

$$\int_0^{\sqrt{2}} \int_0^{2-x^2} x e^{(x^2)} \, dy \, dx$$

9.	Set up iterated integral(s) for the z coordinate of the centroid of the sphere with radius 3 centered at the origin but above $z=0$ and below	region inside a $z = 2$.

