Calculus 3 MTWF 1:00-1:50pm Fall 2025 SH 309

Instructor: Jon White, jwhite@coe.edu

Chair: Jonathan White, jwhite@coe.edu (or Provost Angela Ziskowski, aziskowski@coe.edu)

Web Page: public.coe.edu/~jwhite

Office: Stuart 311

Office Hours: 9:00-9:50am MTWF and by appointment

Office Phone: 319-399-8280

Text: Calculus, Volume 3, Edwin "Jed" Herman et al., OpenStax

WeBWorK and There will be several problem sets and quizzes during the semester, as well as online WeBWorK assignments.

Quizzes: Together these will be worth 250 points.

Math Culture Math Culture Points will constitute 50 points. These will be earned through participation in various activities

Points: outside of class, as detailed on the third page of this syllabus.

Exams: There will be three in-class exams administered during class time. The dates of these are indicated in the

schedule on the back side of this sheet. These exams will be worth 100 points each. The final exam will be held during finals week at the date and time indicated on the back side of this sheet. The final will be worth

200 points.

Grading: Grading will approximately follow a $[92.0\%, \infty) \mapsto A$, $[90\%, 92\%) \mapsto A$, $[87\%, 90\%) \mapsto B$ +, $[82\%, 87\%) \mapsto A$

B, $[80\%, 82\%) \rightarrow B-$, $[77\%, 80\%) \rightarrow C+$, $[72\%, 77\%) \rightarrow C$, $[70\%, 72\%) \rightarrow C-$, $[67\%, 70\%) \rightarrow D+$, $[62\%, 67\%) \rightarrow D$, $[60\%, 62\%) \rightarrow D-$, $(-\infty, 60\%) \rightarrow F$ scale. Current grade information will be available online

through Moodle at all times.

Makeups: For the sake of fairness to those who follow the schedule, makeups for exams will be allowed only under

extenuating circumstances, with documentation and advance notice when humanly possible. Late problem sets and quizzes will generally not be accepted, and if accepted due to extenuating circumstances will generally be subject to a penalty of 20% of the possible points for each day past due. Late WeBWorK will

generally not be accepted.

Any student entering this class should already be aware that calculus is the mathematics of changing quantities. The major development in Calculus 3 is that we widen our scope to functions of more than one variable. This simultaneously adds tremendously to the breadth of phenomena that can be addressed, and also introduces complications that have no analog in the essentially two-dimensional world of Calculus 1 and 2.

Calculus 3 is the culmination of the calculus sequence, and this presents challenges in at least three respects. First, ability to visualize and use spatial intuition is taken to a new level. Second, computations are in some cases correspondingly bigger and longer. Third, abstract theoretical considerations become a more central element, increasingly overshadowing mere computations as the most important material. In response to all three of these considerations the judicious use of technology can be a valuable aid. Sophisticated calculators such as the TI-89 and computer software packages such as Mathematica or CoCalc, when used well, can lead to easier and deeper understanding of the course material. However the use of this technology itself involves a significant learning experience, and often significant frustrations. We will attempt to use CoCalc in this course when the benefits are the greatest, and assist you in its use enough to keep the frustrations to a minimum.

To enter this class, each student must pass a computer-administered antiderivatives "gateway" exam. You may attempt this exam as often as desired, provided that you demonstrate understanding of previous mistakes before a retake. Success by 10pm Wednesday, 9/3 will count as 30 points toward a student's WeBWorK score; success within a week of that earns 15 out of 30 points, and so on, meaning negative scores if the gateway is not completed by 10pm on 9/17.

If at some point the challenges or frustrations of this class get too bad, I strongly encourage you to see me for extra explanation – don't wait until you're overwhelmed. I'm here to help.

Calculus 3 MTWF 1:00-1:50pm Fall 2025 SH 309

		8/20 §2.1 Vectors in R ²	8/22 §2.2 Vectors in R ³	
8/25	8/26	8/27	8/29	
§2.3 Dot Products	§2.4 Cross Products	§2.5 Lines	§2.5 Planes	
9/1	9/2	9/3	$9/5$ $§4.1 f: R^n \to R$	
No Class Labor Day	§2.6 Quadric Surfaces	§2.6 Quadric Surfaces		
9/8	9/9	9/10	9/12	
§4.2 Limits & Continuity	§4.3 Partial Derivatives	§4.4 Tangent Planes	§4.5 Chain Rule	
9/15	9/16	9/17	9/19	
§4.6 Directional Derivatives	§4.6 The Gradient	§4.7 Optimization	§4.7 Optimization	
9/22	9/23	9/24	9/26	
§4.8 Constrained Opt	§4.8 Constrained Opt	Review for Exam	Exam 1	
9/29	9/30	10/1	10/3	
§5.1 Double Integrals	§5.2 General Double Integrals	§5.2 General Double Integrals	§5.3 Double Int. in Polar	
10/6	10/7	10/8	10/10	
§5.6 Applications	§5.4 Triple Integrals	§5.6 Triple Integrals & App.	No Class Fall Break	
10/13	10/14	10/15	10/17	
§5.6 Applications	§2.7 Cylindrical Coordinates	§5.5 Integration in Cylindrical	§2.7 Spherical Coordinates	
10/20	10/21	10/22	10/24	
§5.5 Integration in Spherical	§5.7 The Jacobian	Review for Exam	Exam 2	
10/27	10/28	10/29	10/31	
§3.1 Vector Functions	§3.2 Derivatives of Vec. Func.	§3.3 Arc Length & Curvature	§3.4 Motion in Space	
11/3	11/4	\$6.3 Fun. Theorem of Line Int	11/7	
§6.1 Vector Fields	§6.2 Line Integrals		§6.4 Green's Theorem	
11/10	11/11	11/12	11/14	
§6.5 Curl & Divergence	§13.6 Parametric Surfaces	§6.6 Surface Integrals	§6.7 Stokes' Theorem	
11/17	11/18	11/19	11/21	
§6.8 Divergence Theorem	The Fundamental Theorem	Review for Exam	Exam 3	
No Class – Thanksgiving				
12/1	12/2	12/3	12/5	
Complex Arithmetic	The Complex Plane	Quadratic Approximation	Review for Final	
Final Exam 1pm on Wed 12/10				

Any students with disabilities which might affect their performance in this class should contact me as soon as possible to arrange accommodations.

Coe's faculty has adopted an academic integrity policy. It is your responsibility to understand and follow it.

Diversity, in all its forms, is valuable.

Calculus 3 MTWF 1:00-1:50pm Fall 2025 SH 309 Math Culture Points

A portion of the grade for this course will take the form of Math Culture Points. These will be earned through activities outside of class including, but not necessarily limited to, those listed below:

Activity		Max #
Colloquium Attendance		
Colloquium Presentation	5-15	2
Conference Attendance Midwest Sports Analytics Meeting	5-15 15	2
Mathematics Competition Participation Putnam Exam (12/6/23)		2
Math Culture Reading Specific readings will be posted, typically around 6 each semester Any article from Math Horizons With approval, any relevant article from Math Magazine, CMJ, etc.	5	3 3
Math Club Activities (when appropriate) Movies, Math Club portion of the Playground of Science, Speakers, Workshops, etc.		
Other Appropriate Coe or Outreach Activities Chess Club Meeting Job Shadowing in any relevant field Other Volunteer Outreach (Garfield, McKinley, etc. – talk to Jon for information!)		3 1 4

You should plan to spread your participation throughout the semester. In each case above, credit assumes both full participation and posting a brief summary/response on Moodle in a timely manner. These reflections should generally be between 100 and 300 words, and include both a brief summary and your personal thoughts on the event, and must be submitted within one week of the event, or within the specified time window for other activities. Up to three units of credit may be submitted after normal deadlines in the "Math Culture – Late" category on Moodle, but otherwise exceptions will not be made without serious extenuating circumstances.

Calculus 3 MTWF 1:00-1:50pm Fall 2025 SH 309

Learning Outcomes

By the end of this class each student should be able to demonstrate:

- understanding of limits and continuity of multivariable functions.
- understanding of derivatives of multivariable functions.
- understanding of multiple integrals.
- understanding of vector calculus, including generalizations of the Fundamental Theorem of Calculus.
- understanding of selected applications of the above concepts.

The Provost has mandated that the material below this line appear on all syllabi:

College-wide Policies:

Mission Statement:

Coe College is a national, residential liberal arts college offering a broad array of programs in the arts, sciences, and professions. Our mission is to prepare students for meaningful lives and fulfilling careers in a diverse, interconnected world. Coe's success will be judged by the success of our graduates.

Academic Integrity

At Coe College, we expect academic integrity of all members of our community. Academic integrity assumes honesty about the nature of one's work in all situations. Such honesty is at the heart of the educational enterprise and is a precondition for intellectual growth. Academic dishonesty is the willful attempt to misrepresent one's work, cheat, plagiarize, or impede other students' academic progress. Academic dishonesty interferes with the mission of the College and will be treated with the utmost seriousness as a violation of community standards. Please refer to the Coe College Academic Catalog for complete information regarding Academic Integrity:

www.coe.edu/academics/academic-resources/provosts-office/academic-integrity-policy

FERPA

Students should be aware of their rights regarding the privacy of their educational records. Detailed information about your rights can be found under the FERPA (Family Educational Rights and Privacy Act of 1974) section in the Academic Catalog and online here: https://www.coe.edu/academics/academic-resources/registrar/ferpa In line with FERPA restrictions, students should be aware that an instructor cannot publicly post grades by student name, institutional student identification number, or social security number without first having obtained students' written permission. The Definition of a Course Credit & Expected Workload One course credit at Coe College constitutes 180 hours' worth of student work over the course of the term. "The Department of Education has defined one hour to be 50 minutes, so 150 60-minute hours is equivalent to 180 50-minute hours." This figure includes both the time spent in class and out of class completing course work. In other words, students are expected to devote a considerable amount of time outside of class to this course. For courses that meet in a standard MWF or T-Th slot, students should be expected to work seven hours a week outside of the three hours in class.

Requesting Academic Accommodations

Coe College is committed to creating a learning environment that meets the needs of its diverse student body. If you anticipate or experience any barriers to learning in this course, please visit my office hours to discuss these concerns with me. If you have a medical, physical, psychological, or learning need documented by a healthcare provider, or experience an unforeseen obstacle during the semester, you can make an appointment with Melanie Ostmo, Accessibility Services Coordinator, to request an official accommodation under the Americans with Disabilities Act. You can find more information about the Accessibility Services Office by visiting the Learning Commons website or by emailing accessibility@coe.edu. If you have already been approved for accommodations through Accessibility Services, please meet with me so we can develop a plan for your success together.

Reporting of Sexual Assault or Misconduct

As an instructor, one of my responsibilities is to help create a safe learning environment on our campus. I also have a mandatory reporting responsibility related to my role as a faculty member. It is my goal that you feel able to share information related to your life experiences in classroom discussions, in your written work, and in any one-on-one meetings. I will keep the information you share with me private to the greatest extent possible. However, I am required to share information regarding sexual misconduct or students who may be in danger to themselves or to others. Students may speak to someone confidentially by contacting Student Life at 319-399-8843 or emailing titleix@coe.edu, Safety, and Security at 319-399-8888, Emily Barnard (college counselor) at 319-399-8843, or visit Coe's Title IX website for more information.