Exam 1 Calc 2 2/26/2003

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Integrate $\int x^{3} \ln x d x$. [Hint: the answer is $\frac{x^{4} \ln (x)}{4}-\frac{x^{4}}{16}+C$]
2. If the work required to stretch a spring 1 foot beyond its natural length is $15 \mathrm{ft}-\mathrm{lb}$, how much work is needed to stretch it 6 inches beyond its natural length?
3. Compute the average value of $f(x)=\sin x$ on the interval from $x=0$ to $x=\pi$.
4. Set up an integral for the volume of the solid generated by rotating the region between $y=\sin$ $\mathrm{x}, \mathrm{y}=0, \mathrm{x}=0$, and $\mathrm{x}=\pi$ around the y axis.
5. An aquarium 2 meters long, 1 meter wide, and 1 meter deep is full of water. Set up an integral for the amount of work needed to pump half the water out of the aquarium (the density of water is $1000 \mathrm{~kg} /$ meter 3).
6. Integrate $\int \sin ^{n} x \cos ^{3} x d x$. [Hint: the answer is $\frac{\sin ^{n+1} x}{n+1}-\frac{\sin ^{n+3}}{n+3}+C$]
7. The graph of $x^{2}-y^{2}=1$ is a hyperbola. Set up an integral for the area in the first quadrant bounded by the hyperbola and the line $\mathrm{y}=1$ and use it to find the area.
8. Because of a stunningly negligent editor named Brian, the first printing of the second edition of CliffsQuickReview Calculus was released with a table of integrals that said
$\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{2} \arctan \frac{x}{2}+C$. Explain, in simple enough terms that Brian can follow along (Brian claimed to have taken calculus himself), exactly how this formula is or is not acceptable and why.
9. Suppose a quadrilateral has vertices at $(0,0),(1,0),(0,1)$, and a point (a, b) for which $0<a<1$ and $\mathrm{b}>0$. Set up an integral (or integrals) for the area of this quadrilateral.
10. Jon has a bowl-shaped fountain on his desk which is shaped like a frustum of a sphere with a radius of 9 inches, cut off 3 inches up from the bottom. Set up an integral and use it to find the volume of water contained in this fountain.

Extra Credit (5 points possible): If the region under $\mathrm{y}=\llbracket x \rrbracket$ but above the x axis, between $\mathrm{x}=0$ and $x=m$ (for some integer m), is rotated around the y axis, what can you say about the volume of the resulting solid?

