Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Convert the point with polar coordinates r = 4, $\theta = 5\pi/6$ to rectangular coordinates.

D= 5 T/6

conversion formulas:

4= r cos 0

4 = 4 cos(5716)

r=-913 -

((-a13, a)

y=4 sin(5716)

4= 4. =

2. Determine whether $y = e^{2t}$ is a solution to the differential equation y'' + 3y' - 10y = 0.

y"+3y'-10y=0

46 + 3(96 =) - 10(6 =) = 0

4e2+ be2+ - 10e2+=0

10eat - 10eat =0

0=0 V

Wed done

yes, y= eat is a solution.

3. If a hot cup of coffee is left in a 70° F room, it is found that corresponding differential equation is T(t) = Ke ^{-g/20} + 70. Find representing a cup which begins at 190° F. T(t) = Ae ^{-t/3b} + 70 Find A using H	1 a particular solution	x y(0)=190
190= Ae° +70 A = 120		
The particular soln. For these conditions	is T(t)=12	De-t/30 +70
) Great Great	f!	
4. Set up an integral for the length of the curve with parame	tric equations	
between the point (0, 0) and the point $(\sqrt{3}, \sqrt{3})$. Arc length = $\int_{a}^{b} \sqrt{\frac{dx}{dt}} dt = \frac{dy}{dt} = \frac{dy}{dt}$ Fire length = $\int_{a}^{\sqrt{3}} \sqrt{\frac{dx}{dt}} dt + \frac{dy}{dt} dt$ Arc length = $\int_{a}^{\sqrt{3}} \sqrt{\frac{4\cos 2t}{2}} dt + \frac{2\cos t}{2} dt$	2cost to find the limits of $0 = 2\sin 2t$ $t = \sin \frac{1}{2}0$ $t = \frac{0}{2}$ or $\frac{2\pi}{2}$ $t = 0$, π	Fintegrationin terms 0 = 2 sin t t = sin 0 t=0,7,2
Well ! done!	$\sqrt{3} = 2\sin 2t$ $\sqrt{3}/2 = \sin 2t$ $2t = \sin^2(\sqrt{3}/2)$ $t = \sin^2(\sqrt{3}/2)$ $t = \frac{\sin^2(\sqrt{3}/2)}{2}$	$3 = 2 \sin t$ $\frac{3}{2} = \sin t$ $t = \sin (\frac{3}{2})$ $t = \frac{3}{2} = \frac$

5. Let C(t) be the concentration of a substance in a person's blood. If the body eliminates the substance at a rate proportional to the current concentration, then the concentration will follow

the differential equation $\frac{dC}{dt} = -kC(t)$. Find a general solution to this differential equation.

$$\frac{dC}{dt} = -kClt$$

carinte value
because you
carinte have a

$$|C(t)| = -kt + C$$

 $|C(t)| = e^{-kt + C}$
 $|C(t)| = Ae^{-kt}$

Find the exact coordinates of the lowest point on the curve with parametric equations

$$x = 3t^3 + t$$
, $y = 2t^2 + t$.

$$\alpha = 3t^3 + t^-$$

or
$$\frac{dx}{dt} = gt^2 + 1$$

$$\frac{dy}{dx} = \frac{4t+1}{9t^2+1}$$

The eg lowest joint on the write will-be where the tangent has a slope = 0.

$$4 \frac{4t+1=0}{4t^{-2}-1} = \frac{1}{t^{-2}} = \frac{1}{t^{-$$

 $4 \quad 2 = 3(-\frac{1}{4})^{3} + (-\frac{1}{4}) = -\frac{3}{64} + \frac{1}{4} = \frac{3}{64} + \frac{1}{64} = \frac{3}{64}$

$$y = \frac{-19}{69}$$

$$y = \frac{-19}{69}$$

$$= \frac{-19}{69}$$

$$= \frac{1-2}{8}$$

$$= \frac{-19}{8}$$

$$= \frac{1-2}{8}$$

$$= \frac{1-2$$

7. Set up an integral (or integrals) for the arc length of the portion(s) of the curve $r = \cos 3\theta$ which lies outside the curve $r = \frac{1}{2}$.

$$3\theta = \frac{T}{3}$$

$$\theta - \frac{T}{3}$$

Y= wo 30

= 6 9 [[orin 230] + con 230 10

Nice No

Beth is a calculus student at E.S.U. who wants some help with polar equations. Beth says "So I was talking about our homework assignment with this guy in my class, and there was this question about when you've got the polar equation $r = \theta$. So it's this spiral that goes around and around, and he says that it's horizontal and vertical when it crosses the axes, so like horizontal when it crosses the positive y axis, then vertical when it crosses the negative x axis, and so on. I told him it doesn't really look quite like those are the horizontal and vertical places on my calculator, but he said the calculator just distorts it a little because of the dots or rounding or something. I'm pretty sure I'm right, but I have no idea how to prove it."

Explain to Beth, in terms she can understand, either how to be sure she's right, or how to know

her classmate is right.

9. Set up an integral (or integrals) for the area of the region between the inner and outer loops of the curve $r = 2 + 4\sin \theta$.

A= 53 1/2 rado

A= 5 10 (8+45108) 3 de -

James 1/3 (3+45100) 300

2+45100=0

114

45108=-2

Sinb= -1

B= 510-1(-1/2)

Excellent

