Exam 3 Differential Equations 5/7/2003

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. If you know that $\lambda_{1}=-3$ and $\lambda_{2}=-2$ are eigenvalues of the coefficient matrix of a planar linear system, and that $\mathbf{V}_{1}=\binom{2}{1}$ and $\mathbf{V}_{2}=\binom{-1}{3}$ are the corresponding eigenvectors, write a general solution to the system.
2. Give an example of a coefficient matrix for a planar linear system in which the origin would be classified as a saddle.
3. Give an example of a system of two linear differential equations (with real coefficients) whose eigenvalues will be complex.
4. Sketch the phase portrait for a system of planar differential equations where $\lambda_{1}=-2$ and $\lambda_{2}=$ 1, with $\mathbf{V}_{1}=\binom{0}{1}$ and $\mathbf{V}_{2}=\binom{-1}{1}$ being the corresponding eigenvectors.
5. Given that the planar system

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right) \mathbf{Y}
$$

has general solution

$$
\mathbf{Y}(t)=k_{1} e^{-5 t}\binom{1}{-1}+k_{2} e^{2 t}\binom{1}{2}
$$

find the particular solution satisfying $\mathbf{Y}_{0}=(1,0)$.
6. Give a general solution to the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+0 y \\
& \frac{d y}{d t}=4 x-3 y
\end{aligned}
$$

7. Give a condition under which the planar system associated with the differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

will have purely imaginary eigenvalues.
8. For the planar system

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{cc}
-2 & -1 \\
1 & -4
\end{array}\right) \mathbf{Y}
$$

Find the particular solution satisfying the initial condition $\mathbf{Y}_{0}=(0,1)$.
9. Show that a system of the form

$$
\begin{aligned}
& \frac{d x}{d t}=a x+b y \\
& \frac{d y}{d t}=-b x+a y
\end{aligned}
$$

with $\mathrm{b} \neq 0$ must have complex eigenvalues.
10. Let

$$
\mathbf{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Define the trace of \mathbf{A} to be $\operatorname{tr}(\mathbf{A})=a+d$. Show that A has only one eigenvalue if and only if $(\operatorname{tr}(\mathbf{A}))^{2}-4 \operatorname{det}(\mathbf{A})=0$.

