Bonus Homework for §8.3 Calculus 2 2/11/2005

Each problem is worth zero points, but there is a chance you'll learn some math.

1. Find the x coordinate of the center of mass of the region bounded by $y=9-x^{2}$ and the x axis (think first about what it should be). 0
2. Find the y coordinate of the center of mass of the region bounded by $y=9-x^{2}$ and the x axis. 3.6
3. Find the x coordinate of the center of mass of the right-hand portion of the region bounded by $y=x^{3}$ and $y=x . \quad 8 / 15$
4. Find the x coordinate of the center of mass of the region between $y=x^{3}$ and the line tangent to it at $(1,1)$. $-4 / 5$
5. Find the x coordinate of the center of mass of the portion of the circle $x^{2}+y^{2}=4$ which lies to the right of the line $x=1 . \quad \frac{6 \sqrt{3}}{4 \pi-3 \sqrt{3}} \approx 1.41$
6. Find the x coordinate of the center of mass of the region bounded between $y=1 / x, y=1 / x^{2}$, and x

$$
=2 . \quad \frac{2-2 \ln 2}{2 \ln 2-1} \approx 1.59
$$

7. Find the x coordinate of the center of mass of the region between $x=5 y-y^{2}$ and $y=x . \quad \approx 2.64$
8. The curves $y=\sin x$ and $y=\cos x$ intersect infinitely many times. Find the x coordinate of the center of mass of one of the regions bounded between them. $3 \pi / 4$
