- 1. a) Find the Taylor polynomials of degree 5 and 7 for the function $f(x) = \arctan x$.
 - b) Use the polynomials from part a) to approximate $\arctan(0.1)$, $\arctan(1)$, and $\arctan(2)$.
- 2. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \arctan x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
- 3. a) Find the Taylor polynomials of degree 4 and 6 for the function $f(x) = \cos x$.
 - b) Use the polynomials from part a) to approximate cos(0.1), cos(1), and cos(2).
- 4. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \cos x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

- 1. a) Find the Taylor polynomials of degree 5 and 7 for the function $f(x) = \arctan x$.
 - b) Use the polynomials from part a) to approximate $\arctan(0.1)$, $\arctan(1)$, and $\arctan(2)$.
- 2. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \arctan x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
- 3. a) Find the Taylor polynomials of degree 4 and 6 for the function $f(x) = \cos x$.
 - b) Use the polynomials from part a) to approximate cos(0.1), cos(1), and cos(2).
- 4. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \cos x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

- 1. a) Find the Taylor polynomials of degree 5 and 7 for the function $f(x) = \arctan x$.
 - b) Use the polynomials from part a) to approximate $\arctan(0.1)$, $\arctan(1)$, and $\arctan(2)$.
- 2. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \arctan x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
- 3. a) Find the Taylor polynomials of degree 4 and 6 for the function $f(x) = \cos x$.
 - b) Use the polynomials from part a) to approximate cos(0.1), cos(1), and cos(2).
- 4. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \cos x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

- 1. a) Find the Taylor polynomials of degree 5 and 7 for the function $f(x) = \arctan x$.
 - b) Use the polynomials from part a) to approximate $\arctan(0.1)$, $\arctan(1)$, and $\arctan(2)$.
- 2. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \arctan x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
- 3. a) Find the Taylor polynomials of degree 4 and 6 for the function $f(x) = \cos x$.
 - b) Use the polynomials from part a) to approximate cos(0.1), cos(1), and cos(2).
- 4. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \cos x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

- 1. a) Find the Taylor polynomials of degree 5 and 7 for the function $f(x) = \arctan x$.
 - b) Use the polynomials from part a) to approximate $\arctan(0.1)$, $\arctan(1)$, and $\arctan(2)$.
- 2. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \arctan x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
- 3. a) Find the Taylor polynomials of degree 4 and 6 for the function $f(x) = \cos x$.
 - b) Use the polynomials from part a) to approximate cos(0.1), cos(1), and cos(2).
- 4. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \cos x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

- 1. a) Find the Taylor polynomials of degree 5 and 7 for the function $f(x) = \arctan x$.
 - b) Use the polynomials from part a) to approximate $\arctan(0.1)$, $\arctan(1)$, and $\arctan(2)$.
- 2. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \arctan x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
- 3. a) Find the Taylor polynomials of degree 4 and 6 for the function $f(x) = \cos x$.
 - b) Use the polynomials from part a) to approximate cos(0.1), cos(1), and cos(2).
- 4. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \cos x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

- 1. a) Find the Taylor polynomials of degree 5 and 7 for the function $f(x) = \arctan x$.
 - b) Use the polynomials from part a) to approximate $\arctan(0.1)$, $\arctan(1)$, and $\arctan(2)$.
- 2. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \arctan x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
- 3. a) Find the Taylor polynomials of degree 4 and 6 for the function $f(x) = \cos x$.
 - b) Use the polynomials from part a) to approximate cos(0.1), cos(1), and cos(2).
- 4. a) Find the radius and interval of convergence of the Taylor series for $f(x) = \cos x$.
 - b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).