Exam 2 Foundations of Advanced Mathematics 3/25/2005

Each problem is worth 10 points. Show appropriate justification for full credit. Don't panic.

1. State the definition of a reflexive relation \sim on a set A.
2. State the definition of a one-to-one function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$.
3. Give an example of a function $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ which is one-to-one but not onto.
4. Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be given by $\mathrm{f}(x)=x^{2}$.
a) Find $f([1,3])$.
b) Find $f^{1}((1,4])$.

5. Give examples of:

a) A graph and a walk in the graph that is not a path.
b) Two different trees with 7 vertices.
6. Consider the relation $(a, b) \sim(c, d)$ iff $a d=b c$. Is this relation:
a) reflexive?
b) symmetric?
c) transitive?
d) an equivalence relation on \mathbb{R} ?
7. Bunny is a student taking a math class at Anonymous State University, and she's having some trouble. Bunny has written the following proof that $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$:
"Note that if $n=1$ the statement reads $1^{3}=\left[\frac{1(1+1)}{2}\right]^{2}$ which is true. So suppose the statement is true for some natural number k. Then $k^{3}+(k+1)^{3}=\left[\frac{k(k+1)}{2}\right]^{2}+(k+1)^{3}=$ $\frac{k^{2}(k+1)^{2}}{4}+\frac{4(k+1)^{3}}{4}=\frac{(k+1)^{2}\left(k^{2}+4(k+1)\right)}{4}=\frac{(k+1)^{2}\left(k^{2}+4 k+4\right)}{4}=$ $\frac{(k+1)^{2}(k+2)^{2}}{4}=\left[\frac{(k+1)((k+1)+1)}{2}\right]^{2}$. Therefore by the principle of mathematical induction the statement is true for all natural numbers." [from Primus, September 2004, p. 256]

Critique Bunny's proof. Your job is not to provide a proof yourself, but rather to explain as clearly as possible to Bunny what is satisfactory or unsatisfactory about her proof.
8. Prove that for all $n \in \mathbb{N}, 3$ divides $4^{n}-1$.
9. Prove that if $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a function and T_{1} and T_{2} are subsets of A , then

$$
\mathrm{f}\left(\mathrm{~T}_{1} \cap \mathrm{~T}_{2}\right) \subseteq \mathrm{f}\left(\mathrm{~T}_{1}\right) \cap \mathrm{f}\left(\mathrm{~T}_{2}\right) .
$$

10. Prove or give a counterexample to the following proposition: If f, g, and h are functions such that $f: B$ $\rightarrow \mathrm{C}, \mathrm{g}: \mathrm{A} \rightarrow \mathrm{B}$, and $\mathrm{h}: \mathrm{A} \rightarrow \mathrm{B}$, with $\mathrm{f} \circ \mathrm{g}=\mathrm{f} \circ \mathrm{h}$, then $\mathrm{g}=\mathrm{h}$.

Extra Credit (5 points possible): Let K_{n} be the complete graph on \boldsymbol{n} vertices, that is, a graph with n vertices and with edges connecting every pair of vertices. How many edges does K_{n} have?

