FOUNDATIONS OF ADVANCED MATH 11:00AM SPRING 2005 HICKOK 307

Instructor:	Jonathan White	
E-Mail:	JWhite@Coe.Edu	
Web Page:	http://www.coe.edu/~jwhite/	
Office:	Hickok 206A	
Office Hours:	MTWF 9:00-9:50am and by appointment	
Office Phone:	399-8280	
Home Phone:	841-5111 (between 7am and 10pm)	
Text:	Chapter Zero: Fundamental Notions of Abstract Mathematics, 2 nd , Schumacher	
Problem Sets:	There will be several problem sets during the semester. Together these will be worth 200 points (25% of the final grade)	
Daily Work & Presentations	Day-to-day class participation and presentations will be a prominent aspect of this class, and together will be worth 200 points (25% of the final grade)	
Exams:	There will be two in-class exams administered during class time. The dates of these are indicated in the schedule on the back side of this sheet. These exams will be worth 100 points (12.5% of the final grade) each.	
	The final exam will be held during finals week at the date and time indicated on the back side of this sheet. The final will be worth 200 points (25% of the final grade).	
Grading:	Grading will approximately follow a 90% A, 80% B, 70% C, 60% D scale.	
Makeups:	Late work of any sort will generally not be accepted, and if accepted due to extenuating circumstances will generally be subject to a penalty of 20% of the possible points for each day past due.	

This class is intended to achieve several goals, but primary among them is to give some accurate idea of what mathematics actually is. The specific content of the course is secondary, but my hope is to give a good exposure to many topics which are helpful or necessary to further study in mathematics and related fields.

This course will be profoundly different, both in subject matter and in daily conduct, than what most of you are accustomed to in a math class. Don't let that be overwhelming, and remember that I'm around to help.

Tentative Schedule

	Wednesday, January 12 th §1.1 True or False?	Friday, January 14 th §1.2 & 3 Statements and Quantification	
Monday, January 17 th	Wednesday, January 19 th	Friday, January 21 st	
§1.4 & 5 Statements and Implication	§1.6 & 7 Truth Tables	§1.8 & 9 Negation and Existence	
Monday, January 24 th	Wednesday, January 26 th	Friday, January 28 th	
§1.10&11 Uniqueness & Examples	§1.12 & 13 Direct & Contrapositive P'f	§1.14&15 Proof by Contradiction, etc.	
Monday, January 31 st	Wednesday, February 2 nd	Friday, February 4 th	
§2.1 & 2 Sets and Subsets	§2.3 Set Operations	§2.4 Set Algebra	
Monday, February 7 th	Wednesday, February 9 th	Friday, February 11 th	
§2.5 The Power Set	§2.6 Russell's Paradox & Review	Exam 1	
Monday, February 14 th	Wednesday, February 16 th	Friday, February 18 th	
§3.1 Mathematical Induction	§3.2 Using Induction	§3.3 Complete Induction	
Monday, February 21 st	Wednesday, February 23 rd	Friday, February 25 th	
§4.1 Relations	§4.2 Orderings	§4.3 Equivalence Relations	
Monday, February 28 th	Wednesday, March 2 nd	Friday, March 4 th	
§4.4 Graphs	§4.4 Graphs	§5.1 Functions	
Spring Break – No Classes			
Monday, March 14 th	Wednesday, March 16 th	Friday, March 18 th	
§5.2 Composition & Inverses	§5.3 Images & Inverse Images	§5.4 Order Isomorphisms	
Monday, March 21 st	Wednesday, March 23 rd	Friday, March 25 th	
§5.5 Sequences	§5.6 Binary Operations & Review	Exam 2	
Monday, March 28 th	Wednesday, March 30 th	Friday, April 1 st	
§7.1 Galileo's Paradox	§7.2 Infinite Sets	§7.3 Countable Sets	
Monday, April 4 th	Wednesday, April 6 th	Friday, April 8 th	
§7.4 Beyond Countability	Symp.	§7.5 Comparing Cardinalities	
Monday, April 11 th	Wednesday, April 13 th	Friday, April 15 th	
§7.6 The Continuum Hypothesis	§A.1 Elementary Axioms	§A.1 Elementary Axioms	
Monday, April 18 th	Wednesday, April 20 th	Friday, April 22 nd	
§A.2 The Axiom of Infinity	§A.2 The Axiom of Infinity	§A.3 Axioms of Choice & Substitution	
Monday, April 25 th Review	Wednesday, April 27 th Review		
	Final Exam: Wednesday, May 4 th , 8am	·	

Any students with disabilities which might affect their performance in this class should contact me as soon as possible to arrange accommodations.

The faculty has adopted a policy on academic integrity. It is your responsibility to understand and follow it.

Diversity, in all its forms, is valuable.