## Exam 1 Differential Equations 2/6/04

Each problem is worth 10 points. For full credit indicate clearly how you reached your answer.

1. Which of the following are differential equations? Circle all that are.
a) $\mathbf{X}=(\mathbf{A}-\lambda \mathbf{I})$
b) $y^{\prime}=3 y t$
c) $\frac{d y}{d t}+f(y) g(t)-3 \cdot \frac{y}{30+t}$
d) All men are mortal, and Socrates is a man, therefore all men are Socrates.
e) $y=A e^{-3 t}-B$
2. Sketch the phase line for the differential equation $\frac{d P}{d t}=0.3 P\left(1-\frac{P}{2000}\right)$, and identify any equilibrium point(s) as sources, sinks, or nodes.
3. The differential equation for the temperature of a differential equations book placed in a $2000^{\circ}$ furnace is $\frac{d H}{d t}=k(2000-H)$, at least up until around where $\mathrm{H}(t)=451^{\circ}$. This equation has general solutions of the form $H(t)=2000-A e^{-k t}$. If a book has a temperature of $70^{\circ}$ when first thrown into the furnace, and two minutes later has heated up to $200^{\circ}$, find a particular solution (with values accurate to two significant figures) fitting this situation.
4. Jon's water conditioner has been sabotaged so that it emits water with 5 grams of pink ink in every gallon of water. If Jon is running water at a rate of 3 gallons per minute into his 10 gallon sink, and the sink is half full of clean water before the ink solution begins to come out, write a differential equation for the amount of pink ink in the sink $t$ minutes after the ink starts to come out, and an initial condition representing the situation.
5. Find a general solution to the differential equation $\frac{d y}{d t}=\beta y-\alpha$.
6. Show that if $f(x)$ is an integrable function, $g(x)$ is a differentiable function, and $u=g(x)$, then $\int f(g(x)) \cdot g^{\prime}(x) d x=\int f(u) d u$
7. Find a general solution to the differential equation $\frac{d y}{d t}=e^{2 t}+5 y$.
8. Sketch the bifurcation diagram for the differential equation $\frac{d y}{d t}=\left(y^{2}-\alpha\right)\left(y^{2}-4\right)$. Include direction arrows on the phase lines and make clear the exact $\alpha$ values where bifurcations occur.
9. Solve the initial value problem $t \frac{d y}{d t}=y+\left(t^{2}-y^{2}\right)^{1 / 2}, y(1)=0$ by using the substitution $u=\frac{y}{t}$.
10. Somebody tells you that if two functions are each solutions to a differential equation, then their product must also be a solution to that differential equation. Are they right? Why or why not?
