Exam 2 In-class Portion Differential Equations 3/17/06

Each problem is worth 10 points. For full credit indicate clearly how you reached your answer.

1. Determine whether $x(t)=-e^{-2 t} \sin 3 t, y(t)=e^{-2 t} \cos 3 t$ is a solution to the system of differential

$$
\begin{aligned}
& \frac{d x}{d t}=-2 x-3 y \\
& \frac{d y}{d t}=3 x-2 y
\end{aligned}
$$

2. Find all equilibrium points of the predator-prey system

$$
\begin{aligned}
\frac{d R}{d t} & =2 R\left(1-\frac{R}{2.5}\right)-1.5 R F \\
\frac{d F}{d t} & =-F+0.8 R F
\end{aligned}
$$

3. Find a general solution to the differential equation $y^{\prime \prime}-y^{\prime}-12 y=0$.
4. a) Find a general solution to the partially decoupled system

$$
\begin{aligned}
& \frac{d x}{d t}=3 x+2 y \\
& \frac{d y}{d t}=-2 y
\end{aligned}
$$

b) Find a particular solution satisfying the initial condition $\left(x_{0}, y_{0}\right)=(5,3)$.
5. How do you know that Laplace transforms are linear, i.e. that $\mathscr{L}[a \cdot f(x)+b \cdot g(x)]=a \mathscr{L}[f(x)]+b$ $\mathscr{L}[g(x)]$ for any functions f and g whose Laplace transforms exist?

Exam 2 Take-home Portion Differential Equations 3/17/06

Each problem is worth 10 points. You may freely consult our textbook or any notes you generated prior to receiving this exam, but may not consult with any living being directly or indirectly, nor outside resources of any sort (except of course spreadsheets or software not involving internet access).
6. Use Laplace transforms to find a solution to the differential equation $\frac{d y}{d t}=e^{3 t}+5 y$ subject to the initial condition $y(0)=D$.
7. Consider the system of differential equations for two populations:

$$
\begin{aligned}
& \frac{d x}{d t}=8 x-2 x^{2}-4 x y \\
& \frac{d y}{d t}=9 y-5 x y-3 y^{2}
\end{aligned}
$$

a) Use Euler's method with $\Delta t=0.05$ to approximate $x(3)$ and $y(3)$ if $x(0)=0.7$ and $y(0)=2.6$.
b) Use Euler's method with $\Delta t=0.05$ to approximate $x(3)$ and $y(3)$ if $x(0)=0.5$ and $y(0)=2.6$.
c) Use Euler's method with $\Delta t=0.05$ to approximate $x(3)$ and $y(3)$ if $x(0)=0.86$ and $y(0)=1.57$.
d) Comment on the equilibria of this system. Do they appear to be sources, sinks, or nodes?
8. Do problem \#14 from $\S 2.4$ in the text.
9. Find the Laplace transform of the function blip $_{a, b}(t)=\left\{\begin{array}{ll}0, & \text { if } t \in(-\infty, a) \\ 1, & \text { if } t \in[a, b) \\ 0, & \text { if } t \in[b, \infty)\end{array}\right.$ without computing any integrals - use only facts we've already established in class.
10. If you know that $y(t)$ has Laplace transform $Y(s)$, with some domain $S \subseteq \mathbb{R}$, what can you say about the Laplace transform of $t \cdot y(t)$?

