Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.

Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- $\mathscr{L}(y(t))=\int_{0}^{\infty} y(t) e^{-s t} d t$
$1 / 4$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$.
$1 / 2$. Let $y(t)=e^{3 t}$. Find $\mathscr{L}(y(t))$ for $s>3$. Why does the restriction matter?

1. Let $y(t)=e^{a t}$. Find $\mathscr{L}(y(t))$ for $s>a$. Why does the restriction matter?
$3 / 2$. Let $y(t)=1$. Find $\mathscr{L}(y(t))$ again, this time cleverly using your result from problem 1 .
2. Show that $\mathscr{L}\left(\frac{d y}{d t}\right)=s \cdot \mathscr{L}(y)-y(0)$.
3. Find $\mathscr{L}(\cos \omega t)$.
4. Find $\mathscr{L}(\sin \omega t)$.
