b) Find (2, 5) ∪ [4, 10].

c) Find (2, 5) - [4, 10].

d) Find $\{3, 7\} \times \{-1, 0, 1\}$, where "x" indicates the Cartesian product.

e) Solve the inequality $|2x - 1| \le 5$, and write your answer as an interval or union of intervals.

2. State and prove the triangle inequality.					

3. Let $\{A_i \mid i \in I\}$ be an indexed family of sets , and let B be any set, all subsets of some universal set U. Show that $B \cap \bigcup_{i \in I} A_i = \bigcup_{i \in I} (B \cap A_i)$.

4. If A and B are bounded sets of real numbers, $A \cup B$ is bounded as well.

5. Let A , B , C , and D be sets. If $A \subseteq B$ and $C \subseteq D$, then $A \cap C \subseteq A$	$B\cap D$.
Extra Credit [2 points possible]: If A and B are n-dense sets, then A	$A \cap B$ and $A \cup B$ are also <i>n</i> -dense.