Examlet 4 Foundations of Advanced Math 4/14/06

Each problem is worth 10 points. Appropriate justification is required for full credit.

1. a) Let R be a relation on the set A. State the definition of R being transitive.
b) Give an example of a relation on the set $\{a, b, c\}$ which is reflexive and symmetric, but not transitive.

2. If R and S are symmetric relations on a set A, then $R \cap S$ is a symmetric relation on A.
3. Define a relation \sim on the set of ordered pairs of real numbers by

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \text { iff } \sqrt{x_{1}^{2}+y_{1}^{2}}=\sqrt{x_{2}^{2}+y_{2}^{2}} .
$$

a) Find three points which are related to the point $(2,0)$ under \sim.
b) Is \sim an equivalence relation on $\mathbb{R} \times \mathbb{R}$?
5. a) Let $f \subseteq A \times B$ be a bijective function. Define f^{-1} in terms of ordered pairs.
b) Let $f \subseteq \mathbb{R} \times \mathbb{R}$ and $g \subseteq \mathbb{R} \times \mathbb{R}$ be functions. Define $f+g$ in terms of ordered pairs.

Extra Credit [2 points possible]: If $f \subseteq A \times B$ and $g \subseteq C \times D$ be functions, then $f \cap g$ is a function from $A \cap C$ to $B \cap D$.

