1. Suppose that $a, b \in \mathbb{R}$. If a < b, then $a < \frac{a+b}{2} < b$.

2. Suppose that $a, b \in \mathbb{R}$. If a, b > 0, then $a < b \iff a^2 < b^2 \iff \sqrt{a} < \sqrt{b}$.

3. Suppose that $a, b \in \mathbb{R}$. If a, b > 0, then $\sqrt{ab} \le \frac{a+b}{2}$.

4. Suppose that $a, b \in \mathbb{R}$. If a, b > 0, then $\sqrt{a^2 + b^2} \le a + b$.

5. Suppose that $a, b \in \mathbb{R}$. Then $|a-b| \ge |a|-|b|$.

6. Suppose that $a, b, c, d \in \mathbb{R}$, with a < b and c < d. Then a + c < b + d.

7. Suppose that $a, b, c, d \in \mathbb{R}$, with a < b and c < d. Then ac < bd.

8. Suppose that $a, b, c, d \in \mathbb{R}$, with a < b and c < d and b, c > 0. Then ac < bd.

9. Suppose that $a, b, c, d \in \mathbb{R}$, with a < b and a, b > 0. Then $\forall n \in \mathbb{N}, a^n < b^n$.

10. Suppose that $a, b \in \mathbb{R}$. If $a^2 = b^2$, then a = b.

11. Suppose that *r* is a real number. Then $r^2 \ge r$ and $\frac{1}{r^2} \le \frac{1}{r}$.

12. Suppose that r is a real number and $r \ge 1$. Then $r^2 \ge r$ and $\frac{1}{r^2} \le \frac{1}{r}$.