Exam 2 Calc 2 3/2/2007

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. a) Set up an integral for the arc length of the function $f(x)=\ln x$ from $(1,0)$ to $(e, 1)$.
b) Set up an integral for the surface area of the solid resulting when the portion of $f(x)=\ln x$ from $(1,0)$ to $(e, 1)$ is rotated around the x-axis.
2. For the integral $\int_{1}^{5} \sqrt{\ln x} d x$, the left-hand approximation with 2 subdivisions is 2.09629 and the right-hand approximation with 2 subdivisions is 4.63357 . Find the trapezoidal and midpoint approximations with 2 subdivisions.
3. Set up an integral for the mean of the p.d.f. $p(x)=\left\{\begin{array}{cl}\frac{1}{3} e^{-\frac{x}{3}} & \text { for } \mathrm{x} \geq 0 \\ 0 & \text { for } \mathrm{x}<0\end{array}\right.$.
4. Set up integrals for \bar{x}, the x coordinate of the center of mass of the first-quadrant portion of a circle of radius 2 centered at the origin.
5. Derive the integral formula $\int \tan ^{n} u d u=\frac{1}{n-1} \tan ^{n-1} u-\int \tan ^{n-2} u d u+C$.
6. Evaluate $\int \frac{d x}{x\left(1+x^{2}\right)}$.
7. Bunny is a calculus student at Enormous State University, and she's having some trouble. Bunny says "Ohmygod! This trig stuff is so hard! This one problem from our exam review sheet was so confusing. The answers said $1 / 2$ tan squared, but I got $1 / 2$ sec squared, but my friend who's really smart said maybe they were the same, but they don't look the same to me. How can you tell?"

Help Bunny by explaining to her whether such answers are actually equivalent, and how you can tell.
8. Derive the integral formula $\int e^{a u} \cos b u d u=\frac{e^{a u}}{a^{2}+b^{2}}(a \cos b u+b \sin b u)+C$.
9. Evaluate the integral $\int_{1}^{\infty} \frac{1}{x^{p}} d x$, where p is a constant.
10. Derive the integral formula $\int \frac{d u}{\left(a^{2}-u^{2}\right)^{3 / 2}}=\frac{u}{a^{2} \sqrt{a^{2}-u^{2}}}+C$.

Extra Credit (5 points possible): Derive the integral formula

$$
\int \csc ^{3} u d u=-\frac{1}{2} \csc u \cot u+\frac{1}{2} \ln |\csc u-\cot u|+C .
$$

