You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

- 1. Do #3 from the Discovery Project on p. 517 of Stewart.
- 2. Find the area between the line y = x, the right half of the hyperbola $x^2 y^2 = 1$, and the line y = 0, or show that the area is infinite.
- 3. Define $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$. a) Find $\Gamma(1)$, $\Gamma(2)$, $\Gamma(3)$, $\Gamma(4)$, and $\Gamma(5)$. b) Show that $\Gamma(n+1) = n \Gamma(n)$.
- 4. It can be shown in Calc 3 that $\int_0^\infty e^{-u^2} du = \frac{\sqrt{\pi}}{2}$. What is $\Gamma(\frac{1}{2})$?