Examlet 1a Foundations of Advanced Math 2/2/07

1. a) State the definition of an odd integer.
b) Is the statement " $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x \cdot y=3)$ " true or false? Support your answer.
2. a) Make a truth table for the statement $\mathrm{P} \wedge \mathrm{Q}$.
b) Determine whether the propositional $(P \vee Q) \Rightarrow R$ is equivalent to $(P \Rightarrow R) \vee(Q \Rightarrow R)$.
3. Show that if n is an integer for which n^{3} is odd, then n is odd.
4. Show that if x is rational and y is irrational, then $x+y$ is irrational.
5. Show that $(\forall n \in \mathbb{N}, n \geq 4)\left(n!>2^{n}\right)$.
