Examlet 2c Foundations of Advanced Math 2/23/07

1. a) If A and B are sets, state the definition of $A \cap B$.
b) Let $C=\{1,2,3\}$ and $D=\{3,4,5\}$. What is $C \cup D$?
c) Let $E=[1,5]$ and $F=[3,8)$. What is $E-F$?
2. a) Suppose $A_{i}=[1 / n, n+3]$ for all $n \in \mathbb{N}$. What is $\bigcup_{n \in \mathbb{N}} A_{n}$?
b) Let $A_{i}=[1 / n, n+3]$ for all $n \in \mathbb{N}$ as in part a. What is $\bigcap_{n \in \mathbb{N}} A_{n}$?
c) Let $B=\{a, b, c\}$ and $C=\{1,2\}$. What is $B \times C$?
3. a) Prove or give a counterexample: If $a, b \in \mathbb{R}$, with $a<b$, then $a<\frac{a+b}{2}<b$.
b) Prove or give a counterexample: If $a, b, c, d \in \mathbb{R}$, with $a<b$ then $\sqrt{a b} \leq \frac{a+b}{2}$.
4. Let $\left\{A_{i} \mid i \in I\right\}$ be an indexed family of sets, all subsets of some universal set. Show that

$$
\left(\bigcup_{i \in I} A_{i}\right)^{\prime}=\bigcap_{i \in I} A_{i}^{\prime}
$$

5. Let A, B, and C be sets. Show that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
