Examlet 3a Foundations of Advanced Math 3/23/07

1. a) State the definition	on of a decreasing function	n	
b) Give an example	e of a set which is not bou	ınded.	
2. Is the product of an	even function with an oc	dd function even or odd?	Support your answer.

3. Let $fA \to B$ and $g: B \to C$ both be injections. Show that $g \circ f$ is injective.

4. Suppose that <i>A</i> prove that it isn'	is a denumerable set, a t.	and let $B = \{1,2,3\}$.	Prove that $A \times B$ is	denumerable, or

5. Show that for any $a, b \in \mathbb{R}$ with a < b, [0, 1] and [a, b] are equipollent.