- 1. Suppose $A_n = [0, n]$. What is $\bigcup_{n \in \mathbb{N}} A_n$?
- 2. Suppose $A_n = [0, n]$. What is $\bigcap_{n \in \mathbb{N}} A_n$?
- 3. Suppose $B_n = \{m \in \mathbb{N} \mid -n < m < n\}$. What is $\bigcup_{n \in \mathbb{N}} B_n$?
- 4. Suppose $B_n = \{m \in \mathbb{N} \mid -n < m < n\}$. What is $\bigcap_{n \in \mathbb{N}} B_n$?
- 5. Suppose $C_n = \left(\frac{-1}{n}, \frac{1}{n}\right)$. What is $\bigcup_{n \in \mathbb{N}} C_n$?
- 6. Suppose $C_n = \left(\frac{-1}{n}, \frac{1}{n}\right)$. What is $\bigcap_{n \in \mathbb{N}} C_n$?

7. Suppose
$$D_n = \{n^p \mid p \in \mathbb{N}\}$$
. What is $\bigcup_{n \in \mathbb{N}} D_n$?

8. Suppose
$$D_n = \{n^p \mid p \in \mathbb{N}\}$$
. What is $\bigcap_{n \in \mathbb{N}} D_n$?

9. Let $\{E_{\alpha} \mid \alpha \in \Lambda\}$ be an indexed family of sets. Show that for each $\beta \in \Lambda$, $E_{\beta} \subseteq \bigcup_{\alpha \in \Lambda} E_{\alpha}$.

10. Let $\{E_{\alpha} \mid \alpha \in \Lambda\}$ be an indexed family of sets. Show that for each $\beta \in \Lambda$, $\bigcap_{\alpha \in \Lambda} E_{\alpha} \subseteq E_{\beta}$.

Let $F = \{1, 2, 3\}, G = \{a, b\}, H = \{\alpha, \beta\}, I = (0,1).$

- 11. What is $F \times G$?
- 12. What is $H \times H$?
- 13. What is $F \times F$?
- 14. What is $G \times G \times G$?
- 15. What is $I \times I$?
- 16. What is $F \times I$?