Homework 3 Foundations 2/16/07

1. Suppose $A_{n}=[0, n]$. What is $\bigcup_{n \in \mathbb{N}} A_{n}$?
2. Suppose $A_{n}=[0, n]$. What is $\bigcap_{n \in \mathbb{N}} A_{n}$?
3. Suppose $B_{n}=\{m \in \mathbb{N} \mid-n<m<n\}$. What is $\bigcup_{n \in \mathbb{N}} B_{n}$?
4. Suppose $B_{n}=\{m \in \mathbb{N} \mid-n<m<n\}$. What is $\bigcap_{n \in \mathbb{N}} B_{n}$?
5. Suppose $C_{n}=\left(\frac{-1}{n}, \frac{1}{n}\right)$. What is $\bigcup_{n \in \mathbb{N}} C_{n}$?
6. Suppose $C_{n}=\left(\frac{-1}{n}, \frac{1}{n}\right)$. What is $\bigcap_{n \in \mathbb{N}} C_{n}$?
7. Suppose $D_{n}=\left\{n^{p} \mid p \in \mathbb{N}\right\}$. What is $\bigcup_{n \in \mathbb{N}} D_{n}$?
8. Suppose $D_{n}=\left\{n^{p} \mid p \in \mathbb{N}\right\}$. What is $\bigcap_{n \in \mathbb{N}} D_{n}$?
9. Let $\left\{E_{\alpha} \mid \alpha \in \Lambda\right\}$ be an indexed family of sets. Show that for each $\beta \in \Lambda, E_{\beta} \subseteq \bigcup_{\alpha \in \Lambda} E_{\alpha}$.
10. Let $\left\{E_{\alpha} \mid \alpha \in \Lambda\right\}$ be an indexed family of sets. Show that for each $\beta \in \Lambda, \bigcap_{\alpha \in \Lambda} E_{\alpha} \subseteq E_{\beta}$.

Let $F=\{1,2,3\}, G=\{a, b\}, H=\{\alpha, \beta\}, I=(0,1)$.
11. What is $F \times G$?
12. What is $H \times H$?
13. What is $F \times F$?
14. What is $G \times G \times G$?

15 . What is $I \times I$?
16. What is $F \times I$?

