Exam 1 Calc 2 1/30/2008

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Write an integral for the area of the region between the graph of $y=9-x^{2}$ and the x-axis.
2. Write an integral for the average value of the function $f(x)=x^{3}$ on the interval $[0,2]$.
3. Write an integral for the volume of the solid of revolution obtained by rotating the region between y $=1 / x, y=0, x=1$, and $x=5$ around the x-axis.
4. Suppose that a spring with a natural length of 6 inches requires 200 pounds to hold it stretched to a length of 9 inches. How much work is required to stretch it from a length of 6 inches to a length of 12 inches?
5. Evaluate $\int_{e}^{e^{2}} \frac{d x}{x \sqrt{\ln x}}$.
6. Write an integral for the volume of the solid of revolution obtained by rotating the region between y $=x^{2}, y=0, x=1$, and $x=2$ about the axis $x=4$.
7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Well, crap. We're doing these work problems in calc, and they're really complicated, but I think there's an easier way. If I can figure out the weight for all the water in a tank, and it's gotta get up 2 feet to go out some spout, I can just take the whole weight times 2 feet and that's work, right? So all this stuff with integrals is just to make it hard for us to weed us out from pre-engineering, right?"

Help Biff by explaining to him why what he's proposing does or does not work.
8. Evaluate $\int x \sqrt{a+b x} d x$, where a and b are constants.
9. Write an integral for the volume of a frustum of a right circular cone with height h, lower base radius R, and top radius r. [Stewart]

10. Jon plans to build a water tower on top of his house just in case. The holding tank will be a sphere 5 feet in radius, with its bottom 25 feet above ground level. The water is pumped up from a well which draws water from 240 feet below ground level. Write an integral for the total amount of work required to fill the holding tank.

Extra Credit (5 points possible):
Show that when the region between $y=a \sqrt{x-a x^{2}}$ and the x-axis is rotated around the x-axis, the resulting volume is independent of the constant a. [Rogawski p. 415]

