Exam 2 Calc 2 2/29/2008

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Show that $\int x \cos x d x=x \sin x+\cos x+C$.
2. State the formula for the surface area obtained by rotating the curve $y=f(x), a \leq x \leq b$, about the x-axis [assuming that $y=f(x)$ is positive for all values of x].
3. Evaluate $\int \sin ^{3} \theta \cos ^{2} \theta d \theta$.
4. Set up and evaluate an integral for the arc length of the function $f(x)=x^{2} / 2$ between $(0,0)$ and $(2,4)$. [Hint: You can use the results of problems 8 and 9]
5. Show that if a region shaped like a right triangle with legs of length a and b is positioned so that the right angle is at the origin, the leg of length a lies along the positive x-axis, and the leg of length b lies along the y-axis, then \bar{x}, the x coordinate of the center of mass, lies at $a / 3$.
6. The function $f(t)=\left\{\begin{array}{cc}0 & \text { if } \mathrm{t}<0 \\ t e^{-t} & \text { if } \mathrm{t} \geq 0\end{array}\right.$ is a probability density function. Compute the mean for this p.d.f.
7. Biff is a calculus student at Enormous State University, and he has a question. Biff says "Dude, I'm cramming for my calc test, and I think these partial fraction things are really whacked. The test from last year I paid my frat brother $\$ 50$ for has this question with, like, $\frac{x^{3}}{x(x+1)(x-1)}$, and I did the stuff and got $1 / 2$ and $-1 / 2$ and 0 , so it's $\frac{0}{x}+\frac{-1 / 2}{x+1}+\frac{1 / 2}{x-1}$, right? But then I looked at the back of the book, and they must have used some of that crazy log property stuff, 'cause they got the integral to be $x+\frac{1}{2} \ln \left(\frac{|x-1|}{|x+1|}\right)+C$. How'd they do that?"

Help Biff by pointing out any issues with his approach, or suggesting how to make his result match the book's.
8. Show that $\int \sqrt{a^{2}+u^{2}} d u$ can be transformed by an appropriate substitution into $\int a^{2} \sec ^{3} \theta d \theta$.
9. Derive line 77 from our table of integrals.
10. Evaluate $\int\left(\frac{13}{\left(x^{2}+4\right)(x-3)}\right) d x$.

Extra Credit (5 points possible): Derive line 120 on our table of integrals.

