Exam 2 Calc 2 2/29/2008

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Show that $\int x \cos x \, dx = x \sin x + \cos x + C$.

2. State the formula for the surface area obtained by rotating the curve y = f(x), $a \le x \le b$, about the *x*-axis [assuming that y = f(x) is positive for all values of *x*].

3. Evaluate $\int \sin^3 \theta \cos^2 \theta \, d\theta$.

4. Set up and evaluate an integral for the arc length of the function $f(x) = x^2/2$ between (0,0) and (2,4). [Hint: You can use the results of problems 8 and 9]

5. Show that if a region shaped like a right triangle with legs of length *a* and *b* is positioned so that the right angle is at the origin, the leg of length *a* lies along the positive *x*-axis, and the leg of length *b* lies along the *y*-axis, then \overline{x} , the *x* coordinate of the center of mass, lies at a/3.

6. The function $f(t) = \begin{cases} 0 & \text{if } t < 0 \\ t e^{-t} & \text{if } t \ge 0 \end{cases}$ is a probability density function. Compute the mean for this p.d.f.

7. Biff is a calculus student at Enormous State University, and he has a question. Biff says "Dude, I'm cramming for my calc test, and I think these partial fraction things are really whacked. The test

from last year I paid my frat brother \$50 for has this question with, like, $\frac{x^3}{x(x+1)(x-1)}$, and I did the stuff and got ½ and ½ and 0, so it's $\frac{0}{x} + \frac{-\frac{1}{2}}{x+1} + \frac{\frac{1}{2}}{x-1}$, right? But then I looked at the back of the book, and they must have used some of that crazy log property stuff, 'cause they got the integral to be $x + \frac{1}{2} \ln \left(\frac{|x-1|}{|x+1|} \right) + C$. How'd they do that?"

Help Biff by pointing out any issues with his approach, or suggesting how to make his result match the book's.

8. Show that $\int \sqrt{a^2 + u^2} du$ can be transformed by an appropriate substitution into $\int a^2 \sec^3 \theta d\theta$.

9. Derive line 77 from our table of integrals.

10. Evaluate
$$\int \left(\frac{13}{(x^2+4)(x-3)}\right) dx$$
.

Extra Credit (5 points possible): Derive line 120 on our table of integrals.