Exam 3 Calc 2 3/28/2008

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. a) Find the first 4 partial sums of the series $\sum_{n=1}^{\infty} \frac{3}{10^{n}}$.
b) Find the sum of the series in part a.
2. a) Convert the rectangular coordinates $(-5,0)$ to polar coordinates.
b) Convert the polar coordinates $(6, \pi / 3)$ to rectangular coordinates.
3. Find an equation for the line tangent to the curve with parametric equations $x=t^{4}+1, y=t^{3}+t$ at the point where $t=2$.
4. Determine whether the sequence $a_{n}=\frac{3+5 n^{2}}{n+n^{2}}$ converges or diverges, and if it converges find the limit.
5. A cup of coffee initially has a temperature of $95^{\circ} \mathrm{C}$, and is left in a $20^{\circ} \mathrm{C}$ room. Suppose that you also know that the coffee will cool at a rate of $1^{\circ} \mathrm{C}$ each minute when its temperature is $70^{\circ} \mathrm{C}$.
a) Write a differential equation for the temperature of the coffee after t minutes.
b) Use Euler's method with a step size of $\Delta t=2$ minutes to approximate the temperature of the coffee after 4 minutes.
6. Identify the curve with equation $2 y^{2}-3 x^{2}-4 y+12 x+8=0$, and sketch a good graph of it.
7. Biff is a calculus student at Enormous State University, and he has a question. Biff says "Dude, I love these parametric things, 'cause it's like all you gotta do is have your calculator graph 'em, you know? But for this one I think it screwed up somehow, 'cause it's $x=3 \cos t$ and $y=3 \sin t$, but the graph comes up like kind of a circle. That can't be right, 'cause trig stuff is all wavy, right?'

Help Biff by explaining what's going on.
8. Find a solution to the differential equation $\frac{d H}{d t}=k(H-A)$ satisfying the initial condition $H(0)=$ H_{0}.
9. a) Find the area inside both of the curves $r=\cos 2 \theta$ and $r=\sin 2 \theta$.
b) Let n be a natural number, with $n \geq 2$. Find the area inside both of the curves $\mathrm{r}=\cos n \theta$ and r $=\sin n \theta$.
10. Set up integrals for the area inside the loop of the graph of the function given parametrically by $x=$ $t^{3}-9 t, y=t^{3}-4 t^{2}+3 t$.

Extra Credit (5 points possible): Define a sequence by letting $a_{1}=3$ and then letting $a_{n+1}=\sqrt{a_{n}+1}$. Does a_{n} converge?

