Exam 1 Differential Equations 2/8/08

Each problem is worth 10 points. For full credit indicate clearly how you reached your answer.

1. Determine whether the function $y=\sin t$ is a solution to the differential equation $\frac{d^{2} y}{d t^{2}}+y=\sin t$.
2. State the definition of a separable differential equation.
3. Sketch the phase line for the differential equation
 $d y / d t=f(y)$ if $f(y)$ has the graph shown:
4. Find a general solution to the differential equation $\frac{d y}{d t}=t+t y^{2}$.
5. Use Euler's method with step size $\Delta t=0.5$ to approximate $y(1)$ to the nearest hundredth for a solution y to the differential equation $\frac{d y}{d t}=2 y+1$ subject to the initial condition $y(0)=3$.
6. Find a general solution to the differential equation $\frac{d y}{d t}=\frac{y}{t}+4$.
7. Suppose that $\frac{d y}{d t}=f(y)$ is a differential equation satisfying the hypotheses of our existence and uniqueness theorems. Further suppose that $y_{1}(t)=0, y_{2}(t)=20$, and $y_{3}(t)=30$ are all solutions for all t. If you're seeking a solution satisfying the initial condition $y(0)=5$, what can you conclude about that solution?
8. Find the power series expansion for the general solution up to degree four to the differential equation $\frac{d^{2} y}{d t^{2}}+y=\sin t$.
9. Sketch the bifurcation diagram for the differential equation $\frac{d y}{d t}=y^{3}+\alpha y^{2}$. Include direction arrows on the phase lines and make clear the exact α values where bifurcations occur.
10. For what value(s) of the parameter r is it possible to find explicit formulas (without integrals) for the solutions to $\frac{d y}{d t}=t^{r} y+4$?
