Exam 2a Differential Equations 3/7/08

Each problem is worth 10 points. For full credit indicate clearly how you reached your answer.

1. Determine whether $x(t)=2 e^{4 t}-6 e^{t}, y(t)=2 e^{4 t}+3 e^{t}$ is a solution to the system

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+2 y \\
& \frac{d y}{d t}=1 x+3 y
\end{aligned}
$$

2. State (you don't need proof) the Laplace transforms:
a) $L\left[e^{a t}\right]$
b) $L\left[u_{a}\right]$

$$
\frac{d x}{d t}=10(y-x)
$$

3. Consider the system $\frac{d y}{d t}=28 x-y-x z$. Find all equilibria of the system.

$$
\frac{d z}{d t}=-\frac{8}{3} z+x y
$$

4. Write a system of differential equations to model two interacting populations (of creatures called pinks and quinks) represented by $p(t)$ and $q(t)$ with the following characteristics:

- pinks, in the absence of quinks, will experience exponential population decay.
- quinks, in the absence of pinks, have their population grow logistically to a carrying capacity of Q.
- interactions between pinks and quinks benefit the pink population.
- interactions between pinks and quinks hurt the quink population.

Use letters of your choice for proportionality constants, but write your system in such a way that all of these parameters have positive values.
5. Suppose that you know $x(t)=k_{2} e^{2 t}-\frac{k_{1}}{3} e^{-t}, y(t)=k_{1} e^{-t}$ is a general solution to a system of differential equations. Find the solution satisfying the initial condition $\mathbf{Y}(0)=(x(0), y(0))=(-1,3)$.
6. Find $\frac{d x}{d t}=x+2 y$

$$
\frac{d y}{d t}=3 x
$$

7. Show that $\mathrm{L}[t]=\frac{1}{s^{2}}$, and note any necessary restrictions.
8. Compute the inverse Laplace transform $L^{-1}\left[\frac{4}{s(s+3)}\right]$.
9. Show that $\mathrm{L}\left[\frac{d^{2} y}{d t^{2}}\right]=s^{2} \cdot \mathrm{~L}[y]-s \cdot y(0)-y^{\prime}(0)$.
10. Suppose that you know that $\mathbf{Y}_{1}(t)=(x(t), y(t))$ is a solution to the system of equations $\frac{d x}{d t}=3 x-5 y$ $\frac{d y}{d t}=2 x+y$
